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The standard models for the description of anomalous subdiffusive transport

of particles are linear fractional equations. The question arises as to how

to extend these equations for the nonlinear case involving particles

interactions. The talk will be concerned with the structural instability of

fractional subdiffusive equations and nonlinear aggregation phenomenon.

Model reduction across disciplines. The conference is dedicated to the
60th birthday of Alexander Gorban
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MANCHESTER ”ANOMALOUS” TEAM

Collaboration with Steven Falconer and Peter Straka
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Plan de la présentation

1 INTRODUCTION

2 NONLINEAR FRACTIONAL PDE’s

Subdiffusive Fokker-Planck equation with space dependent anomalous
exponent
Nonlinear fractional PDE’s: nonlinear escape rate
Subdiffusive transport in two-state systems
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Reaction-Advection-Diffusion Equation for Density ρ

Let ρ (x , t) represent the density of particles at point x and time t.

• Reaction-advection-diffusion PDE:

∂ρ

∂t
+ v (x , t) · ∇ρ = D∆ρ+ r (ρ) ρ, x ∈ R

3

where r (ρ) is the reaction rate.
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Reaction-Advection-Diffusion Equation for Density ρ

Let ρ (x , t) represent the density of particles at point x and time t.

• Reaction-advection-diffusion PDE:

∂ρ

∂t
+ v (x , t) · ∇ρ = D∆ρ+ r (ρ) ρ, x ∈ R

3

where r (ρ) is the reaction rate.

• Fractional PDE with anomalous transport (Levy flights, subdiffusion,
etc.):

ταD
µ
t ρ = −Dα (−∆)

α

2 ρ+ r(ρ)ρ, x ∈ R
3

where D
µ
t ρ is the Caputo derivative and the Laplacian ∆ is replaced by a

Riesz fractional operator: − (−∆)
α

2 .
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Anomalous transport: subdiffusion

Subdiffusion:
EX 2(t) ∼ tµ 0 < µ < 1

Biology contains a wealth of subdiffusive phenomena:
1) transport of proteins and lipids on cell membranes (Saxton, Kusumi)
2) RNA molecules in the cells (Golding, Cox)
3) signaling molecules in spiny dendrites (Santamaria)
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Anomalous transport: subdiffusion

Subdiffusion:
EX 2(t) ∼ tµ 0 < µ < 1

Biology contains a wealth of subdiffusive phenomena:
1) transport of proteins and lipids on cell membranes (Saxton, Kusumi)
2) RNA molecules in the cells (Golding, Cox)
3) signaling molecules in spiny dendrites (Santamaria)

Apart from fractional Brownian motion, the linear fractional equations are
the standard models for subdiffusive transport. In these models the
diffusing particles do not interact. The question then arises as to how to
extend these equations for the nonlinear case, involving particles
interactions.
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Subdiffusive Fractional Fokker-Planck (FFP) Equation

Let p(x , t) be the PDF for finding the particle in the interval (x , x + dx)
at time t, then

∂p

∂t
= −

∂
(

vµ(x)D
1−µ
t p

)

∂x
+
∂2

(

Dµ(x)D
1−µ
t p

)

∂x2
(1)

with the fractional diffusion Dµ(x) and drift vµ(x); µ < 1.

The Riemann-Liouville derivative D
1−µ
t is defined as

D
1−µ
t p (x , t) =

1

Γ(µ)

∂

∂t

∫

t

0

p (x , u) du

(t − u)1−µ
(2)

The difference between standard Fokker-Planck equation and FFP
equation is the rate of relaxation of

p (x , t) → pst(x)

.
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Gibbs-Boltzmann distribution

In the anomalous subdiffusive case the relaxation process is very slow and
it is described by a Mittag-Leffler function with the power-law decay

t−µ

as t → ∞ (R. Metzler and J. Klafter, 2000) .

If we put the reflecting barriers at x = 0 and x = L and consider constant
exponent µ and diffusion Dµ, then the fractional FP equation admits the
stationary solution in the form of the Gibbs-Boltzmann distribution

pst(x) = C exp [−U(x)], U(x) =
1

Dµ

∫

x

vµ(z)dz (3)
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Gibbs-Boltzmann distribution

In the anomalous subdiffusive case the relaxation process is very slow and
it is described by a Mittag-Leffler function with the power-law decay

t−µ

as t → ∞ (R. Metzler and J. Klafter, 2000) .

If we put the reflecting barriers at x = 0 and x = L and consider constant
exponent µ and diffusion Dµ, then the fractional FP equation admits the
stationary solution in the form of the Gibbs-Boltzmann distribution

pst(x) = C exp [−U(x)], U(x) =
1

Dµ

∫

x

vµ(z)dz (3)

When the anomalous exponent µ depends on the space variable x , the
Gibbs-Boltzmann distribution is not a long time limit of the fractional
Fokker-Planck equation.
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Fractional Fokker-Planck (FFP) equation

Subdiffusive fractional equations with constant µ in a bounded domain
[0, L] are not structurally stable with respect to the non-homogeneous
variations of parameter µ.

µ(x) = µ+ δν(x) (4)

0 Lx

µ
µ(x)

δν(x)

The space variations of the anomalous exponent lead to a drastic change
in asymptotic behavior of p(x , t) for large t.

S. Fedotov and S. Falconer, Phys. Rev. E, 85, 031132, 2012
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Monte Carlo simulations
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Figure : Long time limit of the solution to the system with µi = 0.5 for all i .
Gibbs-Boltzmann distribution is represented by the line.
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Figure : The parameters are µi = 0.5 for all i except i = 42 for which µ42 = 0.3.
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Anomalous chemotaxis and aggregation

Mean field density:

ρ (x , t) → δ(x − xM) as t → ∞. (5)

Here xM is the point in space where the anomalous exponent µ (x) has a
minimum. It means that all cells aggregate into a tiny region of space
forming high density system at the point x = xM. This phenomenon can
be referred to as anomalous aggregation (PRE 83, 021110 (2011)).
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Anomalous chemotaxis and aggregation

Mean field density:

ρ (x , t) → δ(x − xM) as t → ∞. (5)

Here xM is the point in space where the anomalous exponent µ (x) has a
minimum. It means that all cells aggregate into a tiny region of space
forming high density system at the point x = xM. This phenomenon can
be referred to as anomalous aggregation (PRE 83, 021110 (2011)).

Typical nonlinear effects:
1) quorum sensing phenomenon: biophysical processes in microorganisms
depend on the their local population density.
2) cellular adhesion which involves the interaction between neighbouring
cells
3) volume-filling effect which describes the dependence of cell motility on
the availability of space in a crowded environment .
Therefore it is an important problem to find the way how to regularize
subdiffusive fractional equations (Fedotov, Straka, unpublished work).

Sergei Fedotov Leicester
19-22 of August 2014, University of Leicester

/ 18



Self-enhanced degradation and subdiffusion of morphogens

Random morphogen molecules movement. Molecules are produced at the
boundary x = 0 of infinite domain [0,∞) at the given constant rate g and
perform the classical random walk involving the symmetrical random
jumps of length a and the random residence time Tx between jumps.

Our assumptions lead to the following nonlinear reaction-subdiffusion
equation for the mean density of morphogen molecules

∂ρ

∂t
=

∂2

∂x2

[

Dµ(x)e
−

∫
t

0
θ(ρ)ds

D
1−µ(x)
t

[

e
∫
t

0
θ(ρ)dsρ(x , t)

]]

− θ(ρ)ρ, (6)

where θ(ρ) is the ”self-enhanced degradation” rate.

Linear degradation has been considered in the pioneering works by Igor
Sokolov, Bruce Henry, et. al.
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Degradation enhanced diffusion

We find that in the subdiffusive case, a self-enhanced degradation of
morphogen leads directly to a degradation enhanced diffusion.

• The main result is that in the long time limit the gradient profile can be
found from the nonlinear stationary equation for which the diffusion
coefficient is a nonlinear function of the nonlinear reaction rate.

d2

dx2
(Dθ(ρst(x))ρst(x)) = θ(ρst(x))ρst(x). (7)

where the diffusion coefficient Dθ is

Dθ(ρst(x)) =
a2 [θ(ρst(x))]

1−µ(x)

2τ0µ(x)
. (8)

This unusual form of nonlinear diffusion coefficient is a result of the
interaction between subdiffusion and nonlinearity.

Sergei Fedotov and Steven Falconer, Phys. Rev. E 89, 012107 (2014).
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Nonlinear Escape Rate

We assume that the probability of escape due to the repulsive forces
during a small time interval ∆t is

α(ρ(x , t))∆t + o(∆t), (9)

where α(ρ) is the transition rate which is an increasing function of the
particles density ρ.
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Nonlinear Escape Rate

We assume that the probability of escape due to the repulsive forces
during a small time interval ∆t is

α(ρ(x , t))∆t + o(∆t), (9)

where α(ρ) is the transition rate which is an increasing function of the
particles density ρ.

The effective transition rate is the sum of two escape rates:

γ(x , τ) + α(ρ(x , t)), (10)

where the anomalous escape rate γ(x , τ) can be written in terms of the
PDF of residence time ψ(x , τ) and the survival probability
Ψ(x , τ) =

∫

∞

t
ψ(x , u)du as follows

γ(x , τ) =
ψ(x , τ)

Ψ(x , τ)
. (11)

Note that α(ρ(x , t)) can be considered as a death rate.
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Nonlinear Subdiffusive Fractional PDE

Nonlinear fractional Fokker-Planck equation

∂ρ

∂t
= −βa2

∂

∂x

[

∂U

∂x

(

e−Φ

τ0µ(x)
D

1−µ(x)
t [eΦρ] + α(ρ)ρ

)]

+ a2
∂2

∂x2

[

e−Φ

2τ0µ(x)
D

1−µ(x)
t [eΦρ] + α(ρ)ρ

]

, (12)

where

Φ (x , t) =

∫

t

0
α (ρ (x , s)) ds. (13)

This equation describes the transition from subdiffusive transport to
asymptotic normal advection-diffusion transport.

At lower values of Φ =
∫

t

0 α(ρ(x , s))ds, the early evolution is the
development of a single peak at the point of the minimum of µ(x).
(anomalous aggregation).
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Nonlinear Fokker-Planck equation

Incorporating the escape rate α (ρ) and the nonlinear tempering factor
e−Φ provide a regularization of anomalous aggregation.
In the long-time limit for sufficiently large Φ the density profile ρ (x , t)
must converge to a stationary solution of a nonlinear Fokker-Planck
equation

∂

∂x

[

2β
∂U

∂x
D (ρst) ρst(x)

]

=
∂2

∂x2
[D (ρst) ρst(x)] , (14)

where D (ρst(x)) is the nonlinear diffusion coefficient defined as

D (ρst(x)) =
a2 [α(ρst(x))]

1−µ(x)

2τ
µ(x)
0

.

S Fedotov, Phys. Rev. E 88, 032104 (2013)
Applications: (1) the problem of morphogen gradient formation, (2)
chemical reactions with subdiffusion;
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Transport in a Two-State System

• Switching between passive diffusion and active intracellular transport
(Bressloff, Newby, 2013);
• Virus trafficking (Brandenburg and Zhuang, 2007; Holcman, 2007).
Transport in crowded cytoplasm involves two states: slow diffusion and
ballistic movement along microtubules;
• Protein search for DNA binding site (Berg et al 1981, Mirny et al.,
2009). Transport involves 3-D diffusion and 1-D diffusion along DNA
• Transport in spiny dendrites(Santamaria, 2006):
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Migration and proliferation dichotomy in the tumor

invasion

Proliferation and migration of tumor cells are mutually exclusive: the
spreading suppresses cell proliferation and visa versa (Giese et al.)
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Migration and proliferation dichotomy in the tumor

invasion

Proliferation and migration of tumor cells are mutually exclusive: the
spreading suppresses cell proliferation and visa versa (Giese et al.)

Two-state model: S. Fedotov and A. Iomin, Phys. Rev. Lett. 98, 118101
(2007)
ρ1(x , t) - the density for the cells of migratory phenotype
ρ2(x , t) - the density for the cells of proliferating phenotype.

Sergei Fedotov Leicester
19-22 of August 2014, University of Leicester

/ 18



Anomalous Transport and Nonlinear Reactions in

Two-State Systems

Two-state Markovian random process: we assume that the transition
probabilities γ1 and γ2 are constants.
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Anomalous Transport and Nonlinear Reactions in

Two-State Systems

Two-state Markovian random process: we assume that the transition
probabilities γ1 and γ2 are constants.

Master equations for the mean density of particles in state 1 (mobile),
ρ1(x , t), and the density of particles in state 2 (immobile), ρ2(x , t), are

∂ρ1

∂t
= Lxρ1 − γ1ρ1 + γ2ρ2, (15)

∂ρ2

∂t
= −r2 (ρ2) ρ2 − γ2ρ2 + γ1ρ1, (16)

where the reaction rate r2 (ρ2) depends on the local density of particles ρ2.
Here Lx is the transport operator acting on x-coordinate.
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Non-Markovian model for the transport and reactions of

particles in two-state systems

Nonlinear Master equations:

∂ρ1

∂t
= Lxρ1 − i1(x , t) + i2(x , t), (17)

∂ρ2

∂t
= −r2 (ρ2) ρ2 − i2(x , t) + i1(x , t), (18)

where the densities i1(x , t) and i2(x , t) describe the exchange flux of
particles:
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Non-Markovian model for the transport and reactions of

particles in two-state systems

Nonlinear Master equations:

∂ρ1

∂t
= Lxρ1 − i1(x , t) + i2(x , t), (17)

∂ρ2

∂t
= −r2 (ρ2) ρ2 − i2(x , t) + i1(x , t), (18)

where the densities i1(x , t) and i2(x , t) describe the exchange flux of
particles:

i1(x , t) =

∫

t

0

∫

R

K1(t − t ′)p(x − z , t − t ′)ρ1(z , t
′)dzdt ′, (19)

i2(x , t) =

∫

t

0
K2(t − t ′)ρ2(x , t

′)e−
∫
t

t′
r2(ρ2(x ,s))dsdt ′, (20)

where Ki (t) is the memory kernel defined as K̃i (s) =
ψ̃i (s)

Ψ̃i (s)
.
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