New universal Lyapunov functions for nonlinear kinetics

Alexander N. Gorban

Department of Mathematics University of Leicester, UK

July 21, 2014, Leicester

- Relative entropy and divergences
 - Classical relative entropy and H-theorems
 - f-divergences and Rényi–Csiszár–Morimoto H-theorems
 - The most popular examples of $H_h(P||P^*)$
- Maximum of quasiequilibrium relative entropies
 - Quasiequilibrium relative entropy
 - New Lyapunov functions
 - Forward-invariant peeling

- Relative entropy and divergences
 - Classical relative entropy and H-theorems
 - f-divergences and Rényi–Csiszár–Morimoto H-theorems
 - The most popular examples of $H_h(P||P^*)$
- Maximum of quasiequilibrium relative entropies
 - Quasiequilibrium relative entropy
 - New Lyapunov functions
 - Forward-invariant peeling

Boltzmann–Gibbs-Shannon relative entropy (1872-1948)

For a system with discrete space of states A_i

$$H_{\text{BGS}}(P||P^*) = \sum_{i} p_i \left(\ln \left(\frac{p_i}{p_i^*} \right) - 1 \right)$$

where $P = (p_i)$, $P^* = (p_i^*)$ are the positive probability distributions.

Kolmogorov's (master) equation

$$q_{ij}=q_{i\leftarrow j}\geq 0 \text{ for } i\neq j \ (i,j=1,\ldots,n)$$

$$\frac{\mathrm{d}p_i}{\mathrm{d}t} = \sum_{j,j\neq i} (q_{ij}p_j - q_{ji}p_i)$$

With a known positive equilibrium *P**

$$\frac{\mathrm{d}p_i}{\mathrm{d}t} = \sum_{j,j\neq i} q_{ij} p_j^* \left(\frac{p_j}{p_j^*} - \frac{p_i}{p_i^*} \right)$$

where p_i^* and q_{ij} are connected by the balance equation

$$\sum_{j,j
eq i} q_{ij} p_j^* = \left(\sum_{j,j
eq i} q_{ji}
ight) p_i^* \; ext{ for all } i=1,\ldots,n$$

Information processing lemma (continuous time)

Information does not increase (in average) due to random manipulations (Shannon 1948).

For a system with positive equilibrium *P**

$$\frac{\mathrm{d}}{\mathrm{d}t}H_{\mathrm{BGS}}(P\|P^*)\leq 0$$

due to master equation

Mass action law

- A_i are components, c_i is concentration of A_i
- $\sum_{i} \alpha_{ri} A_{i} \rightleftharpoons \sum_{i} \beta_{ri} A_{i}$ elementary reactions (reversible)
- $w_r^+ = k_r^+ \prod_i c_i^{\alpha_{ri}}, w_r^- = k_r^- \prod_i c_i^{\beta_{ri}};$
- $w_r = w_r^+ w_r^-$ the reaction rate
- $\gamma_r = (\gamma_{ri}) = (\beta_{ri} \alpha_{ri})$ the stoichiometric vector
- $\dot{c} = \sum_r \gamma_r w_r$ kinetic equations

Detailed balance and *H*-theorem (essentially, Boltzmann, 1872)

There exists a positive point of detailed balance:

$$c_i^* > 0, \forall r \ W_r^+(c^*) = W_r^-(c^*)$$

Then for all positive c

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{i} c_{i} \left(\ln \left(\frac{c_{i}}{c_{i}^{*}} \right) - 1 \right)$$

$$= -\sum_{r} (w_{r}^{+} - w_{r}^{-}) (\ln w_{r}^{+} - \ln w_{r}^{-}) \leq 0$$

- Relative entropy and divergences
 - Classical relative entropy and H-theorems
 - f-divergences and Rényi–Csiszár–Morimoto H-theorems
 - The most popular examples of $H_h(P||P^*)$
- Maximum of quasiequilibrium relative entropies
 - Quasiequilibrium relative entropy
 - New Lyapunov functions
 - Forward-invariant peeling

f-divergences

For any convex function h(x) defined on the open (x > 0) or closed x > 0 semi-axis

$$H_h(p) = H_h(P||P^*) = \sum_i p_i^* h\left(\frac{p_i}{p_i^*}\right)$$

where $P = (p_i)$ is a probability distribution, P^* is an equilibrium distribution.

Rényi (1960) Csiszár (1963), and Morimoto (1963) proved the information processing lemma (*H*-theorem) for these functions and Markov chains.

Rényi-Csiszár-Morimoto H-theorem

Due to Master equation with the positive equilibrium P^*

$$\frac{\mathrm{d}H_{h}(p)}{\mathrm{d}t} = \sum_{l,j,j\neq l} h'\left(\frac{p_{j}}{p_{j}^{*}}\right) q_{jl} p_{l}^{*}\left(\frac{p_{l}}{p_{l}^{*}} - \frac{p_{j}}{p_{j}^{*}}\right)$$

$$= \sum_{i,j,j\neq i} q_{ij} p_{j}^{*} \left[h\left(\frac{p_{i}}{p_{i}^{*}}\right) - h\left(\frac{p_{j}}{p_{j}^{*}}\right) + h'\left(\frac{p_{i}}{p_{i}^{*}}\right)\left(\frac{p_{j}}{p_{j}^{*}} - \frac{p_{i}}{p_{i}^{*}}\right)\right] \leq 0$$

- Classical relative entropy and H-theorems
- f-divergences and Rényi–Csiszár–Morimoto H-theorems
- The most popular examples of $H_h(P||P^*)$
- Maximum of quasiequilibrium relative entropies
 - Quasiequilibrium relative entropy
 - New Lyapunov functions
 - Forward-invariant peeling

Hartley & BGS

• h(x) is the step function, h(x) = 0 if x = 0 and h(x) = -1 if x > 0.

$$H_h(P||P^*) = -\sum_{i, p_i>0} 1.$$

(the Hartley entropy);

• h = |x - 1|,

$$H_h(P||P^*) = \sum_i |p_i - p_i^*|;$$

(the I_1 -distance between P and P^*);

 $\bullet \ h = x \ln x,$

$$H_h(P||P^*) = \sum_i \rho_i \ln\left(\frac{\rho_i}{\rho_i^*}\right) = D_{\mathrm{KL}}(P||P^*);$$

(the relative Boltzmann-Gibbs-Shannon (BGS) entropy);

Burg & Fisher

 \bullet $h = -\ln x$,

$$H_h(P||P^*) = -\sum_i p_i^* \ln\left(\frac{p_i}{p_i^*}\right) = H_{\text{BGS}}(P^*||P);$$

(the relative Burg entropy);

• $h = \frac{(x-1)^2}{2}$,

$$H_h(P||P^*) = \frac{1}{2} \sum_i \frac{(p_i - p_i^*)^2}{p_i^*} = H_2(P||P^*);$$

(the quadratic approximation of the relative Botzmann–Gibbs-Shannon entropy);

Cressie-Read (CR) family

•
$$h = \frac{x(x^{\lambda}-1)}{\lambda(\lambda+1)}$$

$$H_h(P||P^*) = \frac{1}{\lambda(\lambda+1)} \sum_i p_i \left[\left(\frac{p_i}{p_i^*} \right)^{\lambda} - 1 \right];$$

(the Cressie-Read (CR) family).

If $\lambda \to 0$ then $H_{CR} _{\lambda} \to H_{BGS}$,

if $\lambda \rightarrow -1$ then $H_{\text{CR }\lambda} \rightarrow H_{\text{Burg}}$;

$$H_{\operatorname{CR}} (P \| P^*) = \max_{i} \left\{ \frac{p_i}{p_i^*} \right\} - 1;$$

$$H_{\operatorname{CR}} - \infty(P \| P^*) = \max_{i} \left\{ \frac{p_i^*}{p_i} \right\} - 1.$$

Tsallis

•
$$h = \frac{(x^{\alpha} - x)}{\alpha - 1}$$
, $\alpha > 0$,

$$H_h(P||P^*) = \frac{1}{\alpha-1} \sum_i p_i \left[\left(\frac{p_i}{p_i^*} \right)^{\alpha-1} - 1 \right].$$

(the Tsallis relative entropy).

The puzzle of nonlinear systems

- For the linear systems many Lyapunov functionals are known in the explicit form,
- On the contrary, for the nonlinear MAL systems with detailed balance we, typically, know the only Lyapunov function H_{BGS};
- The situation looks rather intriguing and challenging: for every finite reaction mechanism with detailed balance there **should be** many Lyapunov functionals, but we cannot construct them.
- We present a general procedure for the construction of a family of new Lyapunov functionals from H_{BGS} for nonlinear MAL kinetics and a given reaction mechanism.
- There is no chance to find many Lyapunov functions for all nonlinear mechanisms together.

- Relative entropy and divergences
 - Classical relative entropy and H-theorems
 - f-divergences and Rényi–Csiszár–Morimoto H-theorems
 - The most popular examples of $H_h(P||P^*)$
- Maximum of quasiequilibrium relative entropies
 - Quasiequilibrium relative entropy
 - New Lyapunov functions
 - Forward-invariant peeling

Quasiequilibrium

Let

$$H(c) = H_{\text{BGS}}(c) = \sum_{i} c_{i} \left(\ln \left(\frac{c_{i}}{c_{i}^{*}} \right) - 1 \right)$$

For every linear subspace $E \subset \mathbb{R}^n$ and a given concentration vector $c^0 \in \mathbb{R}^n_+$ the *quasiequilibrium composition* is the conditional minimizer of H:

$$c_{\mathsf{E}}^*(c^0) = \operatorname*{argmin}_{c \in (c^0 + \mathsf{E}) \cap \mathbb{R}^n_+} H(c)$$

The *quasiequilibrium divergence* is the value of *H* at the quasiequilibrium:

$$H_{E}^{*}(c^{0}) = \min_{c \in (c^{0}+E) \cap \mathbb{R}_{+}^{n}} H(c)$$

Properties of quasiequilibria

- H is strongly convex and ∇H has logarithmic singularity at c_i → 0.
- Therefore, for a positive vector $c^0 \in \mathbb{R}^n_+$ and a given subspace $E \subset \mathbb{R}^n$ the quasiequilibrium composition $c_E^*(c^0)$ is also positive.

a

$$H_F^*(c^0) \leq H(c^0)$$

and this inequality turns into the equality if and only if c^0 is the quasiequilibrium $c^0 = c_F^*(c^0)$.

- Such quasiequilibrium "entropies" were discussed by Jaynes (1965).
- He considered the quasiequilibrium H-function as the Boltzmann H-function $H_{\rm B}$ in contrast to the original Gibbs H-function, $H_{\rm G}$.
- The Gibbs H-function is defined for the distributions on the phase space of the mechanical systems. The Boltzmann function is a conditional minimum of the Gibbs function, therefore the Jaynes inequality holds

$$H_{\rm B} \leq H_{\rm G}$$

- These functions are intensively used in the discussion of time arrow.
- In the theory of information, quasiequilibrium was studied in detail under the name information projection.

- Consider the reversible reaction mechanism with the set of the stoichiometric vectors ↑.
- For each $\Gamma \subset \Upsilon$ we can take $E = \operatorname{Span}(\Gamma)$ and define the quasiequilibrium.
- Let \mathcal{E}_{Υ} be the set of all subspaces of the form $E = \operatorname{Span}(\Gamma)$ $(\Gamma \subset \Upsilon)$.
- $\mathcal{E}_{\Upsilon}^{k}$ is the set of k-dimensional subspaces from \mathcal{E}_{Υ} for each k.
- Define $H_{\Upsilon}^{k,\max}$ for each dimension $k=0,\ldots,\mathrm{rank}(\Upsilon)$: $H_{\Upsilon}^{0,\max}=H$, and for k>0

$$H_{\Upsilon}^{k,\max}(c) = \max_{E \in \mathcal{E}_{\Upsilon}^k} H_E^*(c)$$

- Relative entropy and divergences
 - Classical relative entropy and H-theorems
 - f-divergences and Rényi–Csiszár–Morimoto H-theorems
 - The most popular examples of $H_h(P||P^*)$
- Maximum of quasiequilibrium relative entropies
 - Quasiequilibrium relative entropy
 - New Lyapunov functions
 - Forward-invariant peeling

$$H^{1,\max}_{\Upsilon}(c^0) = \max_{\gamma \in \Upsilon} \left\{ \min_{c \in (c^0 + \gamma \mathbb{R}) \cap \mathbb{R}^n_+} H(c)
ight\}$$

 $H^{1,\max}_{\Upsilon}(c)$ is a Lyapunov function in \mathbb{R}^n_+ for all MAL systems with the given equilibrium c^* and detailed balance on the set of stoichiometric vectors $\Gamma \subset \Upsilon$.

Simple reaction mechanism for example

Consider a simple reaction mechanism:

- $2 A_2 \rightleftharpoons A_3,$

The concentration triangle $c_1 + c_2 + c_3 = b$ is split by the partial equilibria lines into six compartments.

Example: QE states

Example: H^{1,max} level set

- Relative entropy and divergences
 - Classical relative entropy and H-theorems
 - f-divergences and Rényi–Csiszár–Morimoto H-theorems
 - The most popular examples of $H_h(P||P^*)$
- Maximum of quasiequilibrium relative entropies
 - Quasiequilibrium relative entropy
 - New Lyapunov functions
 - Forward-invariant peeling

- Let *U* be a convex compact set of non-negative *n*-dimensional vectors *c* and for some $\eta > \min H$ the η -sublevel set of *H* belongs to *U*: $\{N \mid H(N) \leq \eta\} \subset U$.
- Let $h > \min H$ be the maximal value of such η .
- Select $\varepsilon > 0$. The $\varepsilon > 0$ -peeled set U is

$$U^{\varepsilon}_{\Upsilon} = U \cap \{ N \in \overline{R^n_+} \, | \, H^{1,max}_{\Upsilon}(N) \leq h - \varepsilon \}$$

• For sufficiently small $\varepsilon > 0$ ($\varepsilon < h - \min H$) this set is non-empty and forward–invariant.

Illustration: forward-invariant peeling

The additional peeling $\|\operatorname{Span}\{\gamma_1, \gamma_2\}\|$ makes the peeled set forward–invariant with respect to the set of systems with interval reaction rate constants.

Main message

- For every reaction mechanism there exists an infinite family of Lyapunov functions for reaction kinetics that depend on the equilibrium but not in the rate constants.
- These functions are produced by the operations of conditional minimization and maximization from the BGS relative entropy.

References

Just look Gorban in arXiv and references there.