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Boltzmann—Gibbs-Shannon relative entropy
(1872-1948)

For a system with discrete space of states A,

i)~ (n(2) )

where P = (p;), P* = (p;*) are the positive probability
distributions.
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Kolmogorov’'s (master) equation

gj =Ci—j > 0fori #j(i,j=1,...,n)
dpi
re _Z(qijpj — GjiPi)
INE
With a known positive equilibrium P*
dpi . : .
% =D aip (ﬁ - &>
i ST

where p;* and g; are connected by the balance equation

ZQijpj*: ZjS p’ foralli=1,...,n

Ik Ik
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Information processing lemma (continuous time)

Information does not increase (in average) due to random
manipulations (Shannon 1948).
For a system with positive equilibrium P*

d
— *) <
@ Hees(P|IP*) <0

due to master equation
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Mass action law

@ A; are components, ¢; is concentration of A;

@ ) . ayiAi = ), BAi — elementary reactions (reversible)
o W =kFITc™, w =k~ [Tc™;

@ w; = w," —w,” —the reaction rate

@ v = (%) = (G — ai) — the stoichiometric vector

® C =), %W, — kinetic equations
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Detailed balance and H-theorem (essentially,
Boltzmann, 1872)

There exists a positive point of detailed balance:
¢t >0,vr w(c*) =w,;(c*)

Then for all positive ¢

a3 (&) )

==Y (W —w)(Inw;" —Inw;) <0
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f-divergences

For any convex function h(x) defined on the open (x > 0) or
closed x > 0 semi-axis

Ho(p) = Hn(PP) = 3 pin (2

where P = (p;) is a probability distribution, P* is an equilibrium
distribution.

Rényi (1960) Csiszar (1963), and Morimoto (1963) proved the

information processing lemma (H-theorem) for these functions
and Markov chains.
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Rényi—Csiszar—Morimoto H-theorem

Due to Master equation with the positive equilibrium P *

dHh(p) S K P (PP

L, j#l

Lol (3) () () (3-3)]

L, j#A
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Hartley & BGS

@ h(x) is the step function, h(x) =0if x =0and h(x) = -1 if

X > 0.
W(PIP)=— > 1.

i, pi>0

(the Hartley entropy);
® h=|x—1],

W(PIP) =3 Ipi — il

(the I;-distance between P and P*);
® h=xlInx,

H(PIIP*) Zp, In <p'> — Dy (P||P¥);

(the relative Boltzmann—Gibbs—Shannon (BGS) entropy);
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Burg & Fisher

® h=—-Inx,

H(PIPT) =~ X pin (S) ~ Heos(P*[P);

(the relative Burg entropy);

o h=01"

2

(PIIP” )—22 Y —hypipe);

(the quadratic approximation of the relative
Botzmann-Gibbs-Shannon entropy);
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Cressie—Read (CR) family

A1
° h="{rp

WA
Hh(PHP*):ﬁZPi [(%) —1] ;

(the Cressie—Read (CR) family).
If A\ — 0then Hcr » — Hgas,
if \ - —1then HCR A — HBurg;

[*}
Her oo(P||P*) = m_ax{—fk} —1:

|
. _ P

Her —oo(P[IP*) = m_ax{p—} -1
i i
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Tsallis

(x*=x)
a—1

* 1 Pi ot
mPIP) = =g b (3] -1
i

(the Tsallis relative entropy).

o h= ,a >0,
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The puzzle of nonlinear systems

@ For the linear systems many Lyapunov functionals are
known in the explicit form,

@ On the contrary, for the nonlinear MAL systems with
detailed balance we, typically, know the only Lyapunov
function Hpgs;

@ The situation looks rather intriguing and challenging: for
every finite reaction mechanism with detailed balance
there should be many Lyapunov functionals, but we
cannot construct them.

@ We present a general procedure for the construction of a
family of new Lyapunov functionals from Hggs for nonlinear
MAL kinetics and a given reaction mechanism.

@ There is no chance to find many Lyapunov functions for all
nonlinear mechanisms together.

Alexander N. Gorban New Entropy



Quasiequilibrium relative entropy
Maximum of quasiequilibrium relative entropies New Lyapunov functions
Forward—invariant peeling

Outline

e Maximum of quasiequilibrium relative entropies
@ Quasiequilibrium relative entropy

Alexander N. G New Entro



Quasiequilibrium relative entropy
Maximum of quasiequilibrium relative entropies New Lyapunov functions
Forward—invariant peeling

Quasiequilibrium

Let

H(c) = Heas(c) = Zci <In (%) _ 1)

For every linear subspace E C R" and a given concentration
vector ¢ € RT the quasiequilibrium composition is the
conditional minimizer of H:

ct(c®) = argmin H(c)
ce(cO+E)NRY

The quasiequilibrium divergence is the value of H at the
qguasiequilibrium:

H:(c®Y= min H(c
E( ) ce(c®+E)NRY ()

Alexander N. Gol New Entropy



Quasiequilibrium relative entropy
Maximum of quasiequilibrium relative entropies New Lyapunov functions
Forward—invariant peeling

Properties of quasiequilibria

@ H is strongly convex and VH has logarithmic singularity at
ci — 0.

@ Therefore, for a positive vector c® € R". and a given
subspace E C R" the quasiequilibrium composition c (c°)
is also positive.

o

HE (c®) < H(c?)
and this inequality turns into the equality if and only if ¢ is
the quasiequilibrium c® = ¢z (c?).
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@ Such quasiequilibrium “entropies” were discussed by
Jaynes (1965).

@ He considered the quasiequilibrium H-function as the
Boltzmann H-function Hg in contrast to the original Gibbs
H-function, Hg.

@ The Gibbs H-function is defined for the distributions on the
phase space of the mechanical systems. The Boltzmann
function is a conditional minimum of the Gibbs function,
therefore the Jaynes inequality holds

Hg < Hg

@ These functions are intensively used in the discussion of
time arrow.

@ In the theory of information, quasiequilibrium was studied
in detail under the name information projection.
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@ Consider the reversible reaction mechanism with the set of
the stoichiometric vectors T.

@ Foreach C T we can take E = Span(I') and define the
quasiequilibrium.

@ Let &y be the set of all subspaces of the form E = Span(I')
rcm.

o &£X is the set of k-dimensional subspaces from &y for each
K.

@ Define HX™ for each dimension k =0, ..., rank(T):
Hg’max =H,andfork >0

k, *
HIS™ () — max Hz (c)
Eesy
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H 1,max

H+™(c) = max min  H(c
YET | ce(cO+yR)NR"

H+™(c) is a Lyapunov function in R". for all MAL systems with
the given equilibrium c* and detailed balance on the set of
stoichiometric vectors I C T.
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Simple reaction mechanism for example

Consider a simple reaction mechanism:

O A=A,

Q A, = A,

Q 2A, = A, + As.
The concentration triangle c1 + ¢, + ¢3 = b is split by the partial
equilibria lines into six compartments.

Alexander N. Gol New Entropy



Quasiequilibrium relative entropy
Maximum of quasiequilibrium relative entropies New Lyapunov functions
Forward—invariant peeling

Example: QE states

b)

A
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Example: H™2 |evel set

b) V1 " A,

Hl,max

level set

2o ly;

[lv1

Ilv2
A1 A3
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Forward—invariant peeling

@ Let U be a convex compact set of non-negative
n-dimensional vectors ¢ and for some n > minH the
n-sublevel set of H belongs to U: {N |H(N) <n} C U.

@ Let h > minH be the maximal value of such 7.
@ Selecte > 0. The € > 0-peeled set U is

UF =UN{N eRT|H™(N) <h—¢}

@ For sufficiently small ¢ > 0 (¢ < h — minH) this set is
non-empty and forward—invariant.
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lllustration: forward-invariant peeling
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The additional peeling ||Span{~1,~2} makes the peeled set
forward—invariant with respect to the set of systems with
interval reaction rate constants.
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Summary

Main message

@ For every reaction mechanism there exists an infinite
family of Lyapunov functions for reaction kinetics that
depend on the equilibrium but not in the rate constants.

@ These functions are produced by the operations of
conditional minimization and maximization from the BGS
relative entropy.
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Just look Gorban in arXiv and references there.
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