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Motivation and aim

Systems and control theory – Process systems

state equations : dx
dt = f (x) + g(x)u

conservation balances
overall mass, energy 7→ temperature
component masses 7→ concentrations

chemical reaction networks (CRNs) with MAL
class of positive polynomial systems, autonomous
constant overall mass (closed) 7→ conservation
only component mass balances
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Motivation and aim

Stability of process systems – Lyapunov functions

state equations of CRNs : dx
dt = P(x)

Positive polynomial systems
structural ≈ parameter − independent (robust)

Structural properties of CRNs
structural descriptor 7→ reaction graph
structural properties 7→ reaction graph properties

Lyapunov function of CRNs
entropy−motivated
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Motivation and aim

Markov chains and their relative entropies
Continuous time Markov chains with positive equilibrium probabilities p∗j . The
dynamics of the probability distribution pi , i = 1, ...,N with qij ≥ 0, (i 6= j):

dpi
dt =

∑
j,j 6=i

qijpj − qjipi ,
∑

i
pi = 1 , 0 ≤ pi ≤ 1 (1)

Relative entropies from the Csiszár-Morimoto function: level-set equivalent
Lyapunov functions

Kullback-Leibner divergence (relative BGS entropy):
Hh̃(p) = Hh̃(p||p∗) = −

∑
i pi ln

(
pi
p∗i

)
' reversible CRNs

relative Burg entropy: Hh(p) = Hh(p||p∗) = −
∑

i p∗i ln
(

pi
p∗i

)
' VlinCRN(p)

normalized relative Burg entropy:
Hh(p) = Hh(p||p∗) = −

∑
i p∗i

(
ln
(

pi
p∗i

)
+ ( pi

p∗1
− 1)

)
' VLV (p)

A. N. Gorban, P. A. Gorban, G. Judge: Entropy: the Markov
ordering approach. Entropy, 2010, 12, 1145-1193
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Motivation and aim

Positive polynomial systems and their
entropy-inspired Lyapunov functions

System dynamics with a given positive equilibrium point x∗
LV linCRN

dx
dt = diag(x) ·M · (x − x∗) dx

dt = Ak · (x − x∗)

Lyapunov functions V (x)

VLV (x) =
m∑

i=1
ci

(
xi − x∗i − x∗i ln xi

x∗i

)
VlinCRN(x) = −

n∑
i=1

x∗i ln
(
xi
x∗i

)
Stability conditions: negative definiteness of(

diag(c) ·M + MT · diag(c)
)

Deficiency Zero Theorem
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MAL-CRN models

MAL-CRN models
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MAL-CRN models

MAL-CRN - formal description
Irreversible reactions: elementary reaction step

L∑
s=1

αsjAs →
L∑

s=1
βslAs

the stoichiometric coefficients αsj and βsl are always non-negative integers
Complexes Ck (k = 1, ...,m) associated to the LHS of the reaction steps
Dynamic model: an autonomous ODE with polynomial RHS on the positive
orthant
x = [x1, ..., xL]T , xs = [As ], Ysj = αsj

ẋ = Y · Ak · ϕ(x) , ϕj(x) =
L∏

s=1
xαsj

s , j = 1, . . . ,m

kj > 0 is the reaction rate constant of the jth reaction, always positive

Ak,lj =
{
−
∑m
`=1 kl,`, if l = j
kjl , if l 6= j

Ak is a Kirchhoff matrix with zero column sum.
K.M. Hangos (H) Conservation and entropy-inspired Lyapunov functions for positive polynomial systemsLeicester, Aug 2014 8 / 29



MAL-CRN models

MAL-CRN - reaction graph
The reaction graph: weighted directed graph
- vertexes correspond to the complexes
- edges describe reactions

The Kirchhoff-matrix Ak determines the reaction graph.
Example: nonlinear MAL-CRN

A1 + 2A2
k12

GGGGGGGGGA A1 + A2 + 2A3 , A1 + A2 + 2A3
k23

GGGGGGGGGA 2A1 + A2 + 2A3 ,

2A1 + A2 + 2A3
k31

GGGGGGGGGA A1 + 2A2

Y =

[
1 1 2
2 1 1
0 2 2

]
, Ak =

[
−k12 0 k31

k12 −k23 0
0 k23 −k31

]
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MAL-CRN models Realizations, transformations of CRNs

Dynamic equivalence, LD transformation
Two MAL-CRNs with realizations (Y (1),A(1)

k ) and (Y (2),A(2)
k ) of the form

ẋ = Mϕ(x)

are dynamically equivalent if M = Y (1)A(1)
k = Y (2)A(2)

k . Most often
Y (1) = Y (2) = Y is given.
The MAL-CRN model with a realization (Y ,Ak) can be transformed to another
MAL-CRN model with a realization (Y ,A′k) using a linear diagonal (LD)
transformation matrix T = diag(c), where c ∈ Rn

+ is an element-wise positive
vector

YAk = TYA′k(diag(ϕ(c)))−1 (2)

Properties of the LD transformation

the LD transformation is an invertible variable transformation, that is also
called variable rescaling,
under an LD transformation, the kinetic property and the qualitative
dynamical properties of MAL-CRNs are preserved.
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MAL-CRN models Deficiency zero theorem for CRNs

MAL-CRN structural stability

Structural stability of an ODE dz
dt = F (z ,P) with parameters P:

stability for a set of parameters P

Important CRN properties

weakly reversible: whenever exists a directed path from Ci to Cj , then there
exists a directed path from Cj to Ci (the reaction graph consists of strongly
connected components)

deficiency zero property: determined by M = YAk

Deficiency Zero theorem
For a weakly reversible MAL CRN of deficiency zero - but regardless of the
positive values the reaction rate coefficients take - the differential equations of
the corresponding reaction system have the following properties: There exists
within each positive stoichiometric compatibility class precisely one steady state;
that steady state is asymptotically stable; and there is no nontrivial cyclic
composition trajectory along which all species concentrations are positive.
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MAL-CRN models Conservation

Conservation of MAL-CRNs

Definition (Conservation property)

The mass conservation property of a MAL-CRN model dx
dt = Mϕ(x) = YAkϕ(x)

holds if a strictly element-wise positive row vector m = [m1, ...,mn] exists in the
left kernel of M, i.e.

mM = 0 (3)

with 0 = [0, 0, ..., 0], that shows the rank-deficient nature of M in a MAL-CRN
with mass conservation.

Conservation and the Kirchhoff property
The zero column-sums within the Kirchhoff property of Ak can be expressed as

1Ak = 0

where 1 = [1, 1, ..., 1], ⇒ rank(Ak) ≤ m − 1.
⇒ Ak has the conservation property with m = 1
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Linear weakly reversible MAL-CRNs

Linear MAL-CRNs
A linear MAL-CRN (with Y = I,M = Ak) has a unique realization with zero
deficiency

dx
dt = Akx

where Ak is a Kirchhoff and therefore Metzler matrix

[Ak ]ij =
{
−
∑m

l=1 kil if i = j
kji if i 6= j

with kij ≥ 0. This implies

[Ak ]ii < 0 ; [Ak ]ij ≥ 0 , i 6= j ; 1Ak = 0

where 1 = [1, ..., 1] a row vector.
A MAL-CRN is weakly reversible, if and only if there exists a positive vector p

Akp = 0
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Linear weakly reversible MAL-CRNs

LD transformation of linear MAL-CRNs

The LD transformed form A′k of a linear MAL-CRN (with Y = I,M = Ak) satisfies

Ak = TA′kT−1

⇒ a linear variable transformation
Properties

leaves the reaction graph unchanged

leaves all structural properties unchanged

the equilibrium point is rescaled
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Linear weakly reversible MAL-CRNs

Stability of weakly reversible linear MAL-CRNs

Global stability of the equilibrium point x∗ follows from the Deficiency
Zero theorem.

Lyapunov functions:
1. Quadratic:

V2(x) = (x − x∗)TP(x − x∗) ⇒ AT
k P + PAk � 0

with a positive definite diagonal P (Ak is a Metzler matrix).
2. Entropy-motivated

Vln(x) = −
n∑

i=1
x∗

i ln
(
xi
x∗

i

)
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Linear kinetic systems

Linear kinetic systems and
their MAL-CRN realizations
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Linear kinetic systems

Non-degenerate linear kinetic systems
A set of polynomial ODEs of the form ẋ = f (x), where x ∈ Rn, is kinetic if and
only if all coordinates functions of f can be written in the form

fi (x) = −xigi (x) + hi (x), i = 1, . . . , n

where gi and hi are polynomials with nonnegative coefficients.
⇒ positivity

Linear kinetic systems
dx
dt = Mx (4)

where the following sign pattern holds:

mij ≥ 0, i 6= j , mii ≤ 0 (5)

Properties:
non-degenerate: each row and also column of the coefficient matrix M
contains at least one non-zero element
variable-structure graph: the non-weighted version of the reaction graph
for Ak in a CRN
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Linear kinetic systems

Conservation
M is a conservation matrix if mM = 0 holds with 0 = [0, ..., 0].

Theorem

The coefficient matrix M of a non-degenerate linear kinetic system (4) is a
conservation matrix if and only if there exists a positive diagonal matrix
T = diag(c1, ..., cn), ci > 0 such that TM = Ak where Ak is a Kirchhoff matrix.

Corollary

A non-degenerate kinetic matrix M with the conservation property is a stability
matrix.

Lemma
If the coefficient matrix M of a non-degenerate linear kinetic system (4) is a
conservation matrix and its variable-structure graph consists of strongly
connected components, then there exists a linear weakly reversible MAL-CRN
that can be obtained from (4) by using a suitable LD transformation.
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Linear kinetic systems

Positive equilibrium points and conservation

Definition
A kinetic matrix M has the p-property, if it has at least one positive
(off-diagonal) element in each of its rows.

Theorem

Let the coefficient matrix M of a non-degenerate linear kinetic system be a
conservation matrix that has the p-property. Then its variable structure graph ~GM
consists of strongly connected components.

Corollary

The existence of positive equilibrium points follows from Theorem 2.

Theorem

Consider a non-degenerate kinetic matrix M with the p-property, that has an
element-wise positive vector p in its kernel. Then M is a conservation matrix.
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Linear kinetic systems

Diagonal stability

Theorem

Consider a non-degenerate kinetic matrix M with the p-property, that has
an element-wise positive vector p in its kernel, i.e. Mp = 0. Then M is
diagonally stable, i.e. there exists an element-wise positive diagonal matrix
Q ∈ D+ such that

MTQ + QM � 0 (6)
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Linear kinetic systems

Lyapunov functions for non-degenerate linear kinetic
systems 1

Theorem (LinearKinetic)

Assume that the coefficient matrix M of a non-degenerate kinetic system has
variable structure graph ~GM consisting of strongly connected components. Then
this system allows to have suitable scaled Lyapunov functions

V2 = (x − x∗)TP(x − x∗) with a positive definite diagonal
P = diag(p1, ..., pn)

VCRN = −
∑n

i=1 tix∗i ln
(

xi
x∗i

)
VLV (x) =

∑m
i=1 ci

(
xi − x∗i − x∗i ln xi

x∗i

)
that are level set equivalent.
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Linear kinetic systems

Lyapunov functions for non-degenerate linear kinetic
systems 2
Proof:

1 there exists a positive diagonal matrix T = diag(t1, ..., tn) ∈ D+, such that
Ak = TM is a Kirchhoff matrix

2 apply state transformation x ′i = tixi to the ODE dx
dt = Mx of the original

system to obtain dx ′
dt = (TM)T−1x ′ = AkT−1x ′ = A′kx ′ where A′k is also a

Kirchhoff matrix
3 xi

x∗i
= x ′i

x ′∗i
, therefore the CRN-type Lyapunov function of the transformed

system in the original coordinates is

VCRN =
n∑

i=1
tix∗i ln( xi

x∗i
)

that is a weighted version (with the positive weights ti) of the original
CRN-type Lyapunov function VlinCRN .
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Generalization to nonlinear cases

Generalization to
nonlinear cases

Lotka-Volterra models
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Generalization to nonlinear cases Lotka-Volterra models

Quasi-polynomial (QP) ODE models

Variables: zi , i = 1, ..., n and quasi-monomials (QMs) qj , j = 1, ...,m
System dynamics: an autonomous ODE with quasi-polynomial RHS on the
positive orthant

dzi
dt = zi

(
Λi +

m∑
j=1

Aijqj

)

QM (output) relationships: qj =
∏m

i=1 z
Bji
i

Algebraic characterization: (Λ,A,B),
M = BA is a descriptor, it is invariant under QM-transformation

z ′j =
n∏

i=1
xΓji

i

Equivalence transformation: B′ = BΓ , A′ = Γ−1A
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Generalization to nonlinear cases Lotka-Volterra models

Lotka-Volterra models

From any QP-model with parameters (A,B, λ) of an equivalence class, the LV
model form can be obtained by QM-transformation and variable extension
such that B′ = I with z ′ = q := x . Then the transformed matrix A′ becomes

A′ = M = B · A (7)

The resulting transformed ODE in LV form

dxl
dt = xl

(
Λl +

m∑
j=1

Mijxj

)
, l = 1, ...,m (8)

is a homogeneous bi-linear ODE that describes the dynamics in the space
X ⊆ Rm

+. However, because of the variable extension and the relationship m ≥ n,
the dynamics lives in a lower n-dimensional manifold of the monomial space X .
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Generalization to nonlinear cases Lotka-Volterra models

Lyapunov function, stability conditions

Abstract form:

dx
dt = diag(x) ·M · (x − x∗)

0 = Λ + M · x∗

Lyapunov function

V (x) =
m∑

i=1
ci

(
xi − x∗i − x∗i ln xi

x∗i

)
Stability condition:
A QP system with a positive equilibrium point x∗ is globally stable if the linear
matrix inequality

MTC + CM ≤ 0 (9)

is solvable for a positive diagonal matrix C = diag(c1, .., cm), with M = BA.
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Generalization to nonlinear cases Lotka-Volterra models

Dynamically similar ODE model
Given an ODE

dz
dt = F (z)

on the positive orthant with F (z) = 0.
The nonlinear translated X-factorable transformation transforms it to

dz
dt = diag(z)F (z − z∗)

where z∗ = [z∗1 , . . . , z∗n ]T are positive real numbers, and z = [z1, ..., zn]T .
If F (z) is composed of polynomial-type functions with a finite number of singular
solutions, then the above transformation can move the singular solutions into the
positive orthant, and leaves the geometry of the state (or phase) space
unchanged within it (but not at or near the boundary).
The underlying dynamically similar linear ODE model By using the nonlinear
translated X-factorable transformation to the LV model with a positive
equilibrium point x∗, the following linear transformed model is obtained

dx
dt = M · (x − x∗)
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Generalization to nonlinear cases Kinetic Lotka-Volterra models

Lyapunov functions of kinetic Lotka-Volterra
systems 1

Theorem

Consider the special case of Lotka-Volterra systems

dx
dt = diag(x) ·M · (x − x∗)

with a non-degenerate kinetic matrix M having a variable structure graph with
strongly connected components. Then this system also admits suitably scaled
Lyapunov functions

V2 = (x − x∗)TP(x − x∗) with a positive definite diagonal
P = diag(p1, ..., pn)

VCRN = −
∑n

i=1 tix∗i ln
(

xi
x∗i

)
besides of the usual VLV (x) =

∑m
i=1 ci

(
xi − x∗i − x∗i ln xi

x∗i

)
.
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Generalization to nonlinear cases Kinetic Lotka-Volterra models

Lyapunov functions of kinetic Lotka-Volterra
systems 2

Proof:
1 apply nonlinear translated X-factorable transformation to the Lotka-Volterra

ODE model to obtain the dynamically similar linear ODE model dx
dt = Mx

with the same non-degenerate kinetic coefficient matrix M.
2 the statement follows directly from Theorem LinearKinetic.
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Conclusion

Conclusion and Future Work
The basis of the results is the level set equivalence of entropy-inspired
Lyapunov functions for continuous Markov chains (Gorban et al, 2010).
Non-degenerate linear kinetic systems with a variable structure graph
consisting of strongly connected components

re-scalability to linear weakly reversible MAL-CRNs
equivalence of conservation and the existence of positive equilibrium
points
existence and equivalence of suitably scaled Lyapunov functions
(quadratic, CRN, LV)

Kinetic Lotka-Volterra systems with positive equilibrium points
using a dynamically similar linear kinetic model
suitably scaled Lyapunov functions (quadratic, CRN, LV)

Future work
extensions to nonlinear MAL-CRNs
extension to the case of non-diagonal positive linear variable
transformations
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