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Processes in cardiovascular system 

Heart beats, breathing

1.  Never stop (while the subject lives)

2.  Rhythmic, but non-periodic

3.  Occurs in a non-linear dissipative system 

– living system




Assume



These processes are self-oscillatory.

Mathematical models: lim it cycles, 
continuously and randomly perturbed






Inter-beat intervals vary, 
also due to breathing


Breathe-in

(faster 

heart-beats)


Breathe-out

(slower 

heart-beats)


electrocardiogram




Inter-beat intervals���
vary (sound)




Previous studies with heart beats: 1 
Weak visual and auditory rhythmic stimuli can change 
heart beats in healthy volunteers. 


[V.S. Anishchenko, A.G. Balanov, N.B. Janson, N.B. Igosheva, G.V. Bordyugov, 
Int. Journal of Bifurcation and Chaos 4, 2339 (2000) ]

[V.S. Anishchenko, A.G. Balanov, N.B. Janson, N.B. Igosheva, G.V. Bordyugov, 
Discrete Dynamics in Nature and Society 4, 201 (2000) ]







Forced synchronisation of heart beats

Black – unforced, Green - forcing Black – forced, Green - forcing 

1:1 synchronization 

Black – unforced, Green - forcing Black – forced, Green - forcing 

6:7 synchronization 
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Experimental results – RR distributions

Red – distribution of RR intervals 
without forcing 
Green - distribution of RR intervals 
with forcing 
Black line – frequency of forcing 

Zero detuning Small detuning

1:1 synchronization 1:1 synchronization

no 
synchronization

Large detuning



Previous studies with heart beats: 2 

Spontaneous breathing can entrain heart beats. 
















[C.Schafer, M.G. Rosenblum, J. Kurths, H.-H. Abel, Nature 392, 239 (1998)] 






Previous studies with heart beats: 3 
Paced breathing can entrain heart beats.































[S. Rzeczinski, A.G. Balanov, N.B. Janson, P.V.E. McClintock, Phys. Rev. E 66, 
051909 (2002) ]


breathing
heart beats




Previous studies with heart beats: 4 
Paced breathing can entrain slow component of heart beats. 
Breathing rate is monotonously increased during 30 minutes. 
Slow component of heart beats is entrained.



 




















[M.D. Prokhorov, V.I. Ponomarenko, V.I. Gridnev, M.B. Bodrov, A.B. Bespyatov, 
Phys. Rev. E 68, 041913 (2003) ]








chronization index !1,6
hr takes high values within this region

and low values outside it.
Let us consider in detail the synchronization between the

process whose basic frequency is "0.1 Hz and respiration.
As in the previous case, the signal of respiration can be re-
garded as an external forcing applied now to the system gen-
erating self-sustained oscillations with frequency f v . For the
respiratory frequencies far from 0.1 Hz, the power spectra of
R-R intervals computed in 3-min intervals of the 30-min
recording demonstrate two main peaks at the frequency f v
and the average frequency of respiration within the 3-min
interval. For the respiratory frequencies close to 0.1 Hz, the
power spectra of R-R intervals demonstrate one main peak at
the average frequency of respiration. Thus, if the frequency
of the external forcing, i.e., the frequency of respiration, is
close to the basic frequency of the system responsible for the
slow regulation of blood pressure and heart rate, then the
frequency locking takes place.
Figure 10 shows a typical dependence of the frequency of

the slow heart rate oscillations on the frequency of respira-
tion. In this plot f r is the frequency at which the main peak
is observed in the power spectrum of the respiratory signal
and f v is the frequency at which the appropriate peak is
observed in the power spectrum of R-R intervals. The power
spectra of both respiration and R-R intervals are computed in
a 3-min running window. The presence of 1:1 frequency
locking is clearly seen within the interval 0.07–0.14 Hz. One
can also see the regions where the experimental points are
located along dashed lines with a fixed-frequency ratio.

These regions indicate the presence of frequency synchroni-
zation of order 2:1 in the interval #0.16–0.21 Hz and of
order 5:2 in the interval #0.22–0.24 Hz.
The relative phase difference $1,1

vr %Fig. 11&a'( exhibits
plateau within the interval 200–650 s &0.08–0.14 Hz' indi-
cating the presence of 1:1 phase synchronization. The phase
synchronization index !1,1

vr %Fig. 11&b'( is close to unity
within the same interval and takes low values outside this
interval. Figure 11&c' demonstrates the regions of frequency
synchronization within which the instantaneous frequency
ratio f v / f r remains approximately constant. The interval of
1:1 phase locking is the longest one. The synchrogram %Fig.
11&d'( also gives indication of 1:1 and 2:1 synchronization
under respiratory frequencies 0.08–0.13 Hz and 0.21–0.22
Hz, respectively. In these regions the synchrogram has a one-
band and two-band structure, respectively.
Synchronization between the main heart rhythm and the

rhythm with frequency f v is also observed under linearly
increasing frequency of respiration. As well as in the cases of
spontaneous breathing and fixed-frequency breathing, this
kind of synchronization is less pronounced than the two oth-
ers. We have not revealed any peculiarities of this kind of
synchronization in comparison with experiments under an-
other regimes of respiration.

IV. DISCUSSION

It is well known that interaction between nonlinear oscil-
latory systems and biological oscillators in particular can

FIG. 9. Generalized phase difference $1,6
hr of the signals of ECG

and respiration for subject D under paced respiration with linearly
increasing frequency f r .

FIG. 10. Dependence of the frequency f v of the low-frequency
heart rate oscillations on the respiratory frequency f r for subject D.
Dashed lines are the lines along which the frequency ratio indicated
by figures is constant.

FIG. 11. Generalized phase difference $1,1
vr &a', phase synchro-

nization index !1,1
vr &b', and the instantaneous frequency ratio &c' of

the process of low-frequency regulation of heart rate and the pro-
cess of respiration for subject B under linearly increasing frequency
of respiration f r . &d' Synchrogram, demonstrating one-band struc-
ture &1:1 synchronization' and two-band structure &2:1 synchroniza-
tion'.
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There were no other requirements on the character of breath-
ing. Each subject was suggested to choose himself the most
comfortable duration of inhale and exhale and the amplitude
of breathing. The frequency of paced respiration was fixed in
two experiments !0.25 Hz and 0.1 Hz" and was linearly in-
creasing from 0.05 Hz to 0.3 Hz in the third case. The dura-
tion of experiments under spontaneous breathing and fixed-
frequency breathing was 10 min. Records under linearly
changing frequency of respiration lasted 30 min. The subject
was given 3–5 min to become accustomed to the required
regime of respiration before measuring under fixed-
frequency breathing. For one of the subjects a series of ad-
ditional experiments was performed in the supine, sitting,
and standing positions under spontaneous breathing. The du-
ration of each of these measurements was 10 min.
Figure 1 shows short segments of a typical ECG and res-

piratory signals. There are several different ways for intro-
ducing phases for nonperiodic oscillations #25$. To calculate
the phase of the ECG signal, following the usual convention,
we assume that at the time moments tk corresponding to the
appearance of R peak !the highest and narrowest peak of the
ECG attributed to the pumping action of the heart" the signal
phase is increased by 2% #25$. Hence, we can assign to the
times tk the values of the ECG signal phase &h(tk)!2%k ,
where k!0,1,2, . . . . Such suggestion is relevant because the
time interval between two subsequent R peaks corresponds
to one complete cycle of the oscillatory process and, there-
fore, the phase increase during this time interval is equal to
2% . Within the interval between R peaks the instantaneous
phase is defined as follows:

&h! t "!2%
t"tk

tk#1"tk
#2%k , tk't$tk#1 . !1"

Defined in this way, the phase is a monotonically increasing
piecewise-linear function of time and its computation does

not require stationarity of the data. To calculate the respira-
tory signal phase &r we use the Hilbert transform #25$ after
removing low-frequency trend and high-frequency noise.
Extracting from the ECG signals the sequence of R-R

intervals, i.e., the series of the time intervals Ti between the
two successive R peaks, we obtain the information about the
heart rate variability. Note that according to Ref. #26$ the
sampling frequency 250 Hz used in our experiments suffices
to detect accurately the time moment of R peak appearance.
Typical sequence of R-R intervals !tachogram" is shown in
Fig. 2!a". To obtain equidistant time series from this not
equidistant sequence we plot on the horizontal axis the time
of R peak appearance tk!( i!1

k Ti instead of the beat number.
Interpolating linearly this discrete dependence and resam-
pling the resulting signal with a constant sampling time we
obtain equidistant data to which the standard procedure of
the Fourier power spectrum calculation can be applied.
The spectral analysis of R-R intervals reveals different

frequency domains of the HRV. Generally, the Fourier power
spectrum of R-R intervals demonstrates well-distinguished
characteristic peaks at frequencies f r and f v associated with
the respiratory and low-frequency fluctuations of the heart
rate, respectively #Fig. 2!b"$. Besides high-frequency range,
0.15–0.4 Hz, and low-frequency range, 0.04–0.15 Hz, con-
taining the peaks f r and f v , respectively, a very low-
frequency range, $0.04 Hz, is defined in the HRV power
spectrum #26$. Physiological interpretation of the HRV spec-

FIG. 1. Segments of an ECG signal !a" and of a respiratory
signal !b" for the case of spontaneous breathing. Both signals are in
arbitrary units.

FIG. 2. Typical R-R intervals !a" and their Fourier power spec-
tra !b" and !c" calculated by different ways !see text"; f h is the
frequency of the main heart rhythm, f r is the respiratory frequency,
and f v is the frequency of the process of slow regulation of blood
pressure and heart rate.
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There were no other requirements on the character of breath-
ing. Each subject was suggested to choose himself the most
comfortable duration of inhale and exhale and the amplitude
of breathing. The frequency of paced respiration was fixed in
two experiments !0.25 Hz and 0.1 Hz" and was linearly in-
creasing from 0.05 Hz to 0.3 Hz in the third case. The dura-
tion of experiments under spontaneous breathing and fixed-
frequency breathing was 10 min. Records under linearly
changing frequency of respiration lasted 30 min. The subject
was given 3–5 min to become accustomed to the required
regime of respiration before measuring under fixed-
frequency breathing. For one of the subjects a series of ad-
ditional experiments was performed in the supine, sitting,
and standing positions under spontaneous breathing. The du-
ration of each of these measurements was 10 min.
Figure 1 shows short segments of a typical ECG and res-

piratory signals. There are several different ways for intro-
ducing phases for nonperiodic oscillations #25$. To calculate
the phase of the ECG signal, following the usual convention,
we assume that at the time moments tk corresponding to the
appearance of R peak !the highest and narrowest peak of the
ECG attributed to the pumping action of the heart" the signal
phase is increased by 2% #25$. Hence, we can assign to the
times tk the values of the ECG signal phase &h(tk)!2%k ,
where k!0,1,2, . . . . Such suggestion is relevant because the
time interval between two subsequent R peaks corresponds
to one complete cycle of the oscillatory process and, there-
fore, the phase increase during this time interval is equal to
2% . Within the interval between R peaks the instantaneous
phase is defined as follows:

&h! t "!2%
t"tk

tk#1"tk
#2%k , tk't$tk#1 . !1"

Defined in this way, the phase is a monotonically increasing
piecewise-linear function of time and its computation does

not require stationarity of the data. To calculate the respira-
tory signal phase &r we use the Hilbert transform #25$ after
removing low-frequency trend and high-frequency noise.
Extracting from the ECG signals the sequence of R-R

intervals, i.e., the series of the time intervals Ti between the
two successive R peaks, we obtain the information about the
heart rate variability. Note that according to Ref. #26$ the
sampling frequency 250 Hz used in our experiments suffices
to detect accurately the time moment of R peak appearance.
Typical sequence of R-R intervals !tachogram" is shown in
Fig. 2!a". To obtain equidistant time series from this not
equidistant sequence we plot on the horizontal axis the time
of R peak appearance tk!( i!1

k Ti instead of the beat number.
Interpolating linearly this discrete dependence and resam-
pling the resulting signal with a constant sampling time we
obtain equidistant data to which the standard procedure of
the Fourier power spectrum calculation can be applied.
The spectral analysis of R-R intervals reveals different

frequency domains of the HRV. Generally, the Fourier power
spectrum of R-R intervals demonstrates well-distinguished
characteristic peaks at frequencies f r and f v associated with
the respiratory and low-frequency fluctuations of the heart
rate, respectively #Fig. 2!b"$. Besides high-frequency range,
0.15–0.4 Hz, and low-frequency range, 0.04–0.15 Hz, con-
taining the peaks f r and f v , respectively, a very low-
frequency range, $0.04 Hz, is defined in the HRV power
spectrum #26$. Physiological interpretation of the HRV spec-

FIG. 1. Segments of an ECG signal !a" and of a respiratory
signal !b" for the case of spontaneous breathing. Both signals are in
arbitrary units.

FIG. 2. Typical R-R intervals !a" and their Fourier power spec-
tra !b" and !c" calculated by different ways !see text"; f h is the
frequency of the main heart rhythm, f r is the respiratory frequency,
and f v is the frequency of the process of slow regulation of blood
pressure and heart rate.
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What is delayed feedback  

2 The European Physical Journal Special Topics

observations is synchronization, which plays a fundamental role in the theory of
oscillations [6].
More recently, another somewhat related phenomenon was discovered: autosyn-

chronization realized by means of delayed feedback [7,8]. This phenomenon occurs in
self-oscillating systems subjected to a special kind of external forcing F (t):

F (t) = K(s(t− τ)− s(t)), (1)

where s(t) is some signal measured from the system in real time which can be any,
possibly nonlinear, combination of system variables; K is the strength of the feedback
and τ is the amount of the time delay. In systems demonstrating different kinds
of oscillations, e.g. regular, chaotic or stochastic, the effect of delayed feedback is
different. Namely, in deterministically chaotic systems, whose attractors consist of a
countable set of unstable periodic orbits (UPO), if τ is set equal to the period of one
of the UPOs and K is chosen suitably, the given UPO can become stable and chaotic
behavior vanishes. In periodically oscillating systems introduction of such a feedback
can change the period of oscillations, or make oscillations more complicated [9–13]. In
self-oscillating systems of any origin this feedback can stop oscillations altogether by
making the fixed point stable [14,15]. In systems where non-damped oscillations are
induced by external random fluctuations, the delayed feedback can shift the typical
timescales of these oscillations and make them more regular or less regular depending
on the feedback parameters [16–19].
Synchronization of heart rhythm by an arbitrary external forcing has a disadvan-

tage that the rhythms in the applied signal are different from the natural physiological
rhythms of the given subject. Therefore this forcing can be unpleasant and disturb-
ing, even if it is weak and non-invasive. Here we propose to apply the phenomenon of
autosynchronization to manipulate rhythms in cardiovascular system, in anticipation
that it will be able to produce effects similar to synchronization, only using a stimu-
lus constructed from the physiological signal of the same subject. The feedback could
be implemented by using any convenient signal, for example electrocardiogramme,
blood pressure or breathing, and it is expected that the relevant physiological process
will be self-adjusted as a result. This paper reports about a series of measurements
conducted in order to test this hypothesis. Our findings suggest that the delayed feed-
back applied through breathing can slow the breathing down in healthy volunteers.
In fewer cases it can lead to irregular breathing.

2 Experimental set-up and data processing

A software was created to record a breathing signal, to delay it by the required
amount (i.e. introduce time delay τ) and to produce a visual and auditory stimulus
carrying information about this delayed signal. The signal recording and application
of the stimulus occurred in real time. The stimulus was produced according to the
following rule: while the delayed signal exceeded a certain threshold value, equal to
approximately half of its amplitude, the computer screen turned red and the sound
of a comfortable intensity at some fixed frequency was generated. The general idea of
this stimulus was not to make it unpleasant, but noticeable. Note, that the delayed
feedback applied here was different from the signal F (t) of Eq. (1): rather than apply-
ing the difference between the current and delayed versions of the breathing signal,
we fed back the visual-and-auditory version of the breathing itself.
24 healthy volunteers aged between 17 and 50 took part in measurements. Every

volunteer was explained the conditions of the experiment, and signed a consent form.
Breathing signal was recorded by means of an elastic band wrapped around the

chest, with a tension transducer attached, supplied by Biopac Ltd. The amplitude

s(t) is some signal measured from the system in real time which can be any, 
possibly nonlinear, combination of system variables; 

K is the strength of the feedback 

τ is the amount of the time delay



Originally introduced for deterministically chaotic systems and intended to stabilise 
unstable periodic orbits (UPO). 























[K. Pyragas, Phys. Lett. A 170, 421 (1992) ]

[K. Pyragas, Phys. Lett. A 206, 323 (1995) ]

 
 



1.  In deterministically chaotic systems: 


Convert chaotic oscillations into periodic.


1.  In periodically oscillating systems:

a)  Change period of oscillations


[W. Just et al, Phys. Rev. Lett. 81, 562 (1998) ]

[J. Xu and K.W. Chung, Physica D 180, 17 (2003) ]

[A.G. Balanov, N.B. Janson, E. Scholl, Phys. Rev. E 71, 

016222 (2005)]




b)  Make oscillations chaotic




[J. Weiner, F.W. Schneider, K. Bar-Eli, J. Chem. Phys. 93, 2704 (1989) ]


orbits with the change of ! is illustrated in Fig. 10 where the
estimates of the periods " of period-2 and period-4 orbits
using Eq. !10" are compared with their true values.
Note that in Eqs. !5"–!10" n is exactly the number of the

leaf of the general bifurcation diagram of the system being
controlled that was described in Sec. II. Thus Eq. !10" pro-
vides one with the way to classify the periodic orbits in the
systems subject to delayed feedback. Namely, index n de-
fines the leaf on which the orbit exists, and m describes the
number of loops the orbit makes before it closes. From the
practical viewpoint this means that in an experiment it is

enough to measure the orbit period for two values of ! at the
same values of K in order to estimate the period of any orbit
with period being multiple of T.

IV. DISCUSSION AND CONCLUSIONS

We have revealed the general structure of the bifurcation
diagram of a system with chaos born through a cascade of
period-doubling bifurcations that is subjected to a delayed
feedback control in the form originally proposed by Pyragas
#6$. The bifurcation diagram is explored in dependence upon
the two feedback parameters: feedback strength K and feed-
back delay !. The range of ! is chosen to be between 0
!absence of feedback" and 25 !slightly more than four times
the period of the period-1 UPO in the original chaotic sys-
tem". K is investigated in the range 0#K#2.65: within this
range at least one attractor of the system with feedback exists
for all values of ! considered. The selected range of feedback
parameters has allowed us to discover a multileaf self-similar
structure of the bifurcation diagram and to reveal some regu-
larities in the structures of different leaves. Each leaf is de-
fined by the existence of a particular periodic orbit and the
limit sets born as a result of its bifurcations. The general
structure of the leaves and typical bifurcation lines have been
worked out. Several regions of chaos were revealed and the
largest regions of chaos were shown in Fig. 2.
On the lines !=T1 and !=T2 the regions of stability of the

period-1 and period-2 orbits are in good agreement with the
analytical predictions of previous works. Relatively small vi-
cinities of these lines are well described by analytical rela-
tions as a function of ! derived in Ref. #29$ and generalized
in the present work for the case of period-m orbits lying on
different leaves of the bifurcation diagram. Namely, the ac-
tual periods of the period-m orbits stabilized by time delayed
feedback depend almost linearly on ! within a certain range
of !. The areas of the parameter plane where no stable oscil-
lations occur, i.e., where an unstable fixed point is stabilized,
are found to be in a good agreement with the results of ear-
lier works.
The results of this work allow us to draw the following

conclusions regarding application of delayed feedback to the
system under study.

!i" The larger the period of the orbit, the smaller is the
domain of its stabilization in !K, !" parameter space.

!ii" The two largest domains of existence in the parameter
plane are the one of a period-1 stable orbit, and the one of the
stable fixed point which is located inside the former. By se-
lecting ! only 16% less than the period of this orbit, one hits
the domain where solely a fixed point is stable. As ! is in-
creased, the stability domains of the fixed point shrink
quickly, i.e., the probability of suppressing oscillations at an
arbitrarily selected value of K drops dramatically.

!iii" There are several domains of stability of the period-1
limit cycle: not only in the vicinity of !=T1, but also for
larger values of !. However, the stability domain around !
=T1 is the widest in dependence on !.

!iv" There are several domains of stability of the period-2
cycle: not only in the vicinity of !=T2, but also for smaller or
larger values of !.

FIG. 9. !Color online" Period " of period-1 orbit !stable or
unstable" vs time delay ! for !a" K=0.13; !b" K=0.8; !c" K=2.0.
Black circles denote the period " calculated numerically, the five
gray !red online" solid lines show the estimates of " using Eq. !9"
for n=0,1,2,3,4 !from left to right".

FIG. 10. !Color online" Period " !a" of period-2 orbit for K
=0.8 and !b" of period-4 orbit for K=2.0 vs time delay !. Black
circles denote periods calculated numerically, gray !red online" lines
show estimates with the formula !10" at m=2 and n=0,1,2 !from
left to right" for period-2 cycles, and at m=4 and n=0,1 for
period-4 cycles.
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How can delayed feedback affect 
self-oscillatory systems?  



How can delayed feedback affect 
noise-induced oscillations? 

[N.B. Janson, A.G. Balanov, E. Scholl, Phys. Rev. Lett. 93, 010601 (2004) ]

[A.G. Balanov, N.B. Janson, E. Scholl, Physica D 199, 1 (2004) ]

[E. Scholl, A.G. Balanov, N.B. Janson, A. Neiman, Stochastics and Dynamics 5, 
281 (2005) ]

[N.B. Janson, A.G. Balanov, and E. Scholl, Control of noise-induced dynamics. 
Handbook of Chaos Control, 2nd Ed, E. Scholl, H.G. Schuster (Eds) 223 2007)]
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What do we know about breathing 

1.  Never stops (while the subject lives)

2.  Rhythmic, but non-periodic

3.  Occurs in a non-linear dissipative system




Assume


•  Breathing is a self-oscillating 

process.

•  Just like heart beats, 

but can be consciously controlled. 

•  Mathematical model: randomly perturbed 

limit cycle?




Breathing slowed down: signals 
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Breathing slowed down: parameters 
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Chaotisation of breathing: signals  
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Chaotisation of breathing: parameters  
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Average phase difference ���
with delayed feedback  

Phase of breathing


delay (%)

(a) (b)

<∆
ϕ>

<∆
ϕ>

delay (%)

Dashed straight lines – if feedback had no effect on the breathing.  
(a) Breathing slows down between 10% and 70%, while staying regular for all 

delays.  
(b) Breathing slows down while staying regular for delays 10% to 30%,  

 and becomes irregular at 40% and more. 
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Fig. 2. Experiment with a volunteer demonstrating the most typical response to delayed
feedback, slowing down of breathing (same as Fig. 1). Fourier power spectral densities (spec-
tra) of the breathing signals are shown for various delay times indicated in the fields of the
plots in per cent. In the top left graph, in addition to the spectrum of the breathing with
delayed feedback of 10% (solid line), the spectrum of unperturbed breathing (without feed-
back) is shown by dashed line. The bottom graph shows the ratio of the main breathing
frequency fmax to the frequency f0 of unperturbed breathing, as a function of the percent-
age delay. The point placed at 0% delay represents f0/f0 = 1 and is shown to visually aid
the assessment of feedback effects.

highest spectrum component of the breathing signal affected by the feedback. The ef-
fect of the feedback was quantitatively described by plotting the ratio of the response
frequency to unperturbed frequency, fmax/f0, as a function of the percentage delay
as shown in the bottom panels of Figs. 2 and 4.
Thirdly, from all breathing signals instantaneous periods were extracted and used

to estimate the average phase difference ∆φ between the stimulus and the response
by the technique described in [20]. Namely, once the moments ti are found at which
the signal crosses the threshold for ith time, the instantaneous phase φ(t) for the
given signal is introduced as

φ(t) = 2π(i− 1) + 2π t− ti
ti+1 − ti

, i = 1, 2, . . .

The phase difference between the delayed feedback and response is calculated,
wrapped into the interval [−2π, 0], and averaged over the observation time 5 min
for every set of measurements. The averaged phase difference ∆φ is plotted as a
function of percentage delay for every volunteer, as shown in Fig. 5. Note, that the



Summary  
Out of 24 volunteers: 
 
1.   in 11 people breathing was slowed down as the percentage delay grew.  

 
Within this group  
a)  in 6 humans breathing stayed quite regular  
b)  In 5 volunteers transition from periodic to irregular breathing pattern 

2.  In 3 volunteers breathing became faster with delay.  
In this group, 
a)   in 2 humans breathing remained regular 
b)   in 1 human it became very irregular.  

3.  In 1 volunteer breathing became more regular with delayed feedback than without, 
but retained its average period.  

4.  9 volunteers showed no apparent response to the delayed feedback.  

[N.B. Janson, A. Pototsky, C. Parkes, Delayed feedback applied to breathing in 
humans, European Physical Journal 222(10) pp 2623-2631 (2013). ]



 



Discussion  
1.  Slowing down for moderate values of delay is 

known to be typical – consistent.

2.  Chaotisation by delay is typical -- consistent 

3.  Due to noise and non-stationarity, it is difficult 

to detect effects in living systems – only very 
robust effects are detectable
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