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(Stochastic) Ensemble Control

extended 
ODE/SDE system

target ensemble

SDE

design

invariant 
measure



Thermostat

extended Hamiltonian system 
(heat bath)

temperature T

Thermostat = ODE/SDE with prescribed 
     unique invariant density  
     (typically Boltzmann-Gibbs) 



Thermostats

A thermostat generates trajectories z(t) such that

Â := lim
t→∞

t
−1

∫
t

0

a(z(s))ds = A

Ĉ(τ) := lim
t→∞

t
−1

∫
t

0

z(s + τ)T
Bz(s)ds ∼ C(τ)

C(τ) =

∫
ϕτ (z)T

Bzρcan(z)dz

A =

∫
a(z)ρcan(z)dz

Define:
stationary average

autocorrelation 
function

(T.L.)≈



Control of “Model Error”

log frequency k

lo
g 

en
er

gy

slope = -2

undissipated finite model
with artificial dissipation

Fourier modes of semi-discrete
Burgers Equation

Can we correct the 
energy decay 

relation using a 
‘thermostat’-like 

device?



Some Questions

Many choices for reduced system with same 
invariant measure - how to design/choose? 

Ergodicity?  How to promote rapid mixing, convergence? 
How does the SDE approach equilibrium? 

Role of dynamics? Relation to ‘natural’ timescales. 

What is the effect of numerical discretization?  
(Invariant measures of numerical methods) 
How does the SDE discretization approach equilibrium? 

Can we correct model error using ensemble controls? 
(i.e. retroactively repair damaged models) 



Ex: Brownian dynamics

invariant
measure:

dX = −∇U(X)dt+
√
2dW

under certain conditions
unique steady state of the Fokker-Planck equation:

L∗
BDρ = −∇· [ρ∇U ] + Δρ

∂ρ

∂t
= L∗

BDρ

ρeq = e−U



dq = M−1pdt

dp = [−∇U(q)− γp]dt+
√
2γkBTM

1/2dW

Fokker-Planck Operator:

mass weighted 
partial Laplacian

L∗
LDρβ = 0

Preserves Gibbs distribution:

L∗
LDη = −(M−1p) · ∇qη +∇U · ∇pη + γ∇p · (pη) + γkBTΔη

γ = friction parameter

Ex: Langevin Dynamics



Properties of        

• Discrete Spectrum, Spectral Gap

• Hypocoercive (but degenerate in the limit of small 
friction)

‖etL‖• ≤ Ke−λγt

LLD

lim
t→∞〈f,ρ(·, t)〉 = 〈f,ρβ〉

• Ergodic

• Exponential convergence in an appropriate norm

λγ > 0

Under suitable conditions…



Hypoellipticity
A 2nd order differential operator with       
coefficients is hypoelliptic if its zeros are 

C
∞

C
∞

Let U be a compact, connected, invariant subset for 
an SDE.     

If the corresponding Kolmogorov operator is 
hypoelliptic on U, then the flow is ergodic on U. 

Acknowledgement:  Hairer’s Lecture Notes

dx = X0(x)dt+

r∑
j=1

Xj(x)dWj

…Hörmander…Villani…Hairer…



Hörmander condition

Span{X0(x), . . . , Xr(x), [Xi, Xj ](x), [Xi, [Xj , Xk]](x) . . . } = R
N

The vector fields                             satisfy a Hörmander 
condition if 

X0(x), . . . , Xr(x)

Theorem 1. Let U ⊂ R
N be open. If X0, X1 : U → R

N are two vectorfields

that satisfy Hörmander’s condition at every z ∈ U , then the operator L∗ which

is defined by

L
∗

ρ := −

N∑
i=1

∂

∂zi

(ρ(z)X0,i(z)) +
1

2

N∑
i,j=1

∂2

∂zi∂zj

(ρ(z)X1,i(z)X1,j(z))

is hypoelliptic.



Langevin dynamics  
[Stuart, Mattingley, Higham ’02]

dx = pdt

dp = f(x)dt− pdt+
√
2dW

b0 = (p, f(x)− p); b1 = (0, 1)

[b0, b1] = −
[

0 1
f ′(x) −1

]
b1 =

[ −1
1

]
HC:

positive measure
on open sets

invariant
measure:

H = p2/2 + U(x)

f(x) = −U ′(x)

Lyapunov function
Therefore, Langevin 
dynamics is ergodic

ρ∗ = e−H



Highly Degenerate Diffusions



H =
p2

2
+ U(q)

q̇ = p

ṗ = −U ′(q)− ξp

μξ̇ = p2 − θ

Newtonian dynamics

preserves

Nose-Hoover

but not ergodic
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H =
p2

2
+ U(q)

q̇ = p

ṗ = −U ′(q)− ξp
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Newtonian dynamics

preserves
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H =
p2

2
+ U(q)

q̇ = p

ṗ = −U ′(q)− ξp

μξ̇ = p2 − θ

Newtonian dynamics

preserves

‘governor’

Nose-Hoover

but not ergodic

Gibbs Governor
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μ1 = 0.2, μ2 = 1

q̇ = p

ṗ = −q − ξp

ξ̇1 = μ−1
1 (p2 − kT )− ξ1ξ2

ξ̇2 = μ−1
2 (μ1ξ

2
1 − kT )

z z

Chains: z

Need for Stochastics



• design to preserve extended Gibbs distribution

• ‘weak’ coupling to stochastic perturbation

ρ̃ = ρ∗(X)e−Ξ2/2

OU

L. Noorizadeh, Theil JSP 2009, 
L., Phys Rev E, 2010
L., Noorizadeh, Penrose JSP 2011

Designer Diffusions



Nose-Hoover-Langevin

• Unification of Nosé-Hoover and Langevin thermostats
• Generalizes NH thermostat
• Includes kinetic energy regulator
• Single scalar stochastic variable

dq = pdt

dp = −∇V − ξp

dξ = μ−1[pT p− nkT]dt− γξdt+
√

2kTγ/μdW



Prop: Let the given system preserve 

Suppose the system is defined on
where       is a smooth compact submanifold
Further suppose that the Lie algebra spanned by
f,g spans          at every point of      

Then the given system is ergodic on



Ergodicity of NHL

Let the potential have the form 

V = q
T
Bq

then, under a mild non-resonance assumption,
the NHL equations are ergodic on a large set.

Proof:  just check the Hörmander condition! 

dq = pdt

dp = −∇V − ξp

dξ = μ−1[pT p− nkT]dt− γξdt+
√
2kTγ/μdW



Ex: Nose-Hoover Langevin on a 
harmonic system

Prop:

f =

[
p

−Bq

]
, g =

[
0
p

]

S{f, g} = Lie algebra (ideal) generated by f, g

Ck =

[
Bk−1p
Bkq

]
∈ S{f, g}

Dk =

[
Bkp
−Bkq

]
∈ S{f, g}





Autocorrelation Functions

quantify ‘efficiency’ of different thermostats
accumulation of error in dynamics vs convergence rate

parameter dependence

[L., Noorizadeh and Penrose, J. Stat. Phys. 2011]



Vortex Method



R

A point vortex model for N vortices in a cylinder

Onsager, 1949 “Statistical Hydrodynamics”
Oliver Bühler,  2002: a numerical study

+ boundary terms

Γiẋi = J∇xiH

[Dubinkina, Frank and L., SIAM MMS 2010]

Point Vortices



Positive temperatures:

Strong vortices of opposite sign tend to approach 
each other

Negative temperatures:

Strong vortices of the same sign will cluster

“... vortices of the same sign will tend to cluster---preferably the 
strongest ones---so as to use up excess energy at the least possible 
cost in terms of degrees of freedom ... the weaker vortices, free to 
roam practically at random will yield rather erratic and disorganized 
contributions to the flow.”

Onsager’s Prediction



4 strong
96 weak vortices
sign indefinite,
0 net circulation in each group
fixed ang. mom.

Simulation results supported Onsager’s predictions

Buhler (2002) Simulation

Use *finite* bath - not the Gibbsian model



H(XA, XB) = HA(XA) +HB(XB)

S(E) = lnΩ (E)

Assume the subsystem and reservoir variables decoupled in the Hamiltonian

Notation:

Then:

Ω(E) = vol{X |H(X) ∈ [E,E + dE)}

Prob{XA|H = E} ∝ ΩB(E −HA(XA))

= exp(SB(E −HA))

= exp(SB(E)− S′
B(E)HA + S′′

B(E)H2
A + · · · )

∝ exp(−βHA + γH2
A + · · · )

assume finite bath energy assume finite bath
energy variance

Gibbs statistics Generalized Bath Model

Modified Canonical Statistics



Modified stochastic control law:

Allows direct comparison with Bühler’s results

ρfinite ∝ e−βH−γH2

+OU(ζ)

+OU(ζ)

Gibbs:

modified
Gibbs:

Modified Gibbs

GBK thermostat gives a 100 → 5 model reduction
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Experimental parameters

β = −0.00055t ∈ [0, 1000]

β ∈{− 0.006,−0.00055, 0.01}

α = 0.5, σ =
√
0.4

γ = − β

2E0
, E0 ∈ {628, 221,−197}

t ∈ [1500, 12000]



β>0 β≈0 β<0
Distance between like signed vortices |xi − xj |++

Buhler ’02

Gibbs

modified
Gibbs



Vortex clustering, N=12



Vortex clustering, N=12



Burgers/KdV



[Bajars, Frank and L., Nonlinearity, 2013]

Rationale
Discretized PDE models, e.g. Euler fluid equations,
have a multiscale structure

Energy flows from low to high modes: “turbulent 
cascade”

Under discretization, the cascade is destabilized leading 
either to an artificial increase in energy at fine scales, or, 
if dissipation is used, artificial decrease 

First steps: try to preserve a target equilibrium ensemble

Thermostat controls in Burgers-KdV



Can we use a molecular ‘thermostat’ to 
control the ensemble in a semi-discrete 
Burgers/KdV model?

Hamiltonian system

energy



Truncated, discrete model

Two other first integrals 
total momentum M, total kinetic energy E



Proposed ‘mixed’ distribution:

Now - design a highly degenerate thermostat

Notes:
• The Hörmander condition is too hard for us to show
• we couple to the high wave numbers
and demonstrate ergodicity using numerics  
• E and Mattingley - prove HC for coupling to slow 
modes (opposite of what we want)



H Dist Kinetic Energy

weak
perturbation
GBK(n*=15)

Burgers

GBK(n*=m):  results using 
a thermostat applied only  
to modes m...N



Convergence of expected value of Hamiltonian

convergence of averages is observed in all cases, 
but is very slow for GBK(n*=15)

Burgers



c1 c1

ck :  autocorrellation function for kth mode

c3 c5



2D Incompressible Navier Stokes  
- 5 slides omitted.



Conclusions

1. SDE-based thermostats are versatile tools to 
approximate averages with respect to given density

2. Degenerate thermostats allow for efficient recovery, 
i.e., with small perturbation of dynamics

3. They can be applied beyond MD, e.g. in fluid 
dynamics (and more broadly)

4. Potentially valuable for model correction, data 
assimilation, etc., i.e. to restore properties of the 
equilibrium ideal system to a corrupted set of 
equations.


