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The model Problem formulation Model description Stability analysis Example Conclusion

Consider a nonlinear oscillator described by the Stuart-Landau
equations

ż = −|z |2z + µz = f (z , µ), (1)

where z ∈ C is the state of the oscillator and µ = β + iω ∈ C
is a complex parameter which defines asymptotic behavior of
the oscillator.

Dynamics of a network of N diffusively-coupled nonlinear
oscillators is described by

ż
¯
= F (z

¯
)− γ L z

¯
, (2)

where constant parameter γ ∈ R+ defines the coupling
strength, matrix L ∈ RN×N is a Laplacian matrix,
z
¯
= col(z1, . . . , zN) ∈ CN and F (z

¯
) = [f (zi , µi )]i∈{1,...,N}.
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Formulation of the synchronization problem

Known fact : With the increase of the coupling strength the oscillators tend to
synchronize their frequencies and their trajectories converge to a common limit
cycle.

Two possible frameworks for synchronization analysis :

Analysis of relative errors

Asymptotic stability : zi (t)− zj(t)→ 0 as t →∞
Practical stability : limt→∞‖zi (t)− zj(t)‖ ≤ δ(γ)

and δ(γ)→ 0 as γ →∞
Consensus type analysis of the error relative to the "averaged" dynamics.

Asymptotic stability : zi (t)− zm(t)→ 0 as t →∞
Practical stability : limt→∞‖zi (t)− zm(t)‖ ≤ δ(γ)

and δ(γ)→ 0 as γ →∞

⇒ Explicit formulation and stability analysis of the averaged dynamics zm(t).
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From static to dynamic consensus

Static case Dynamic case

System model : ẋ = −L x =⇒ ż = f (z , λ) + L̃ z

Averaged system :
State
Dynamics

xm = 1
N 1>x

ẋm = 0
=⇒ zm = ϑ>1lz
=⇒ żm = (λ1 − c|zm|2) zm+

f2(zm, e)

Synchronization analysis :

Error
Error dynamics

e = x− 1xm

ė = −Le
=⇒ e = z− ϑrzm
=⇒ ė = L̃e + (λ1e− PC(e, zm)

(e + zm1))

Stability properties : Exponential
stability
e→ 0

=⇒ Practical stability
lim‖ f2(zm, e)‖ ≤ δ(γ)
and δ(γ)→ 0 as γ →∞
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Model description

Let us decouple network dynamics into linear and nonlinear parts

ż = −C(z) z + (M− γ L)z = −C(z) z + Aγz, (5)

where C(z) = diag{|z1|2, . . . , |zN |2},M = diag{µ1, . . . , µN} and
Aγ =M− γ L is a N × N complex symmetric matrix.
Let the eigenvalue of Aγ satisfy inequalities Re(λ1) ≥ Re(λ2) ≥ . . . ≥ Re(λN).

Assumption 1

There exists γ∗ > 0 such that for all γ ≥ γ∗ there exists a complex orthogonal
matrix Vγ such that matrix Aγ can be factorized as

Aγ = VγΛγV>γ ,
where Λγ ∈ CN×N is a diagonal matrix whose diagonal elements are the
eigenvalues of Aγ and we assume that Re(λ1(Aγ)) > Re(λ2(Aγ)).

Next, we present the matrix Aγ in the following form

Aγ = λ1I + D

where D = Vγ Λ̃V>γ and Λ̃ = diag(0, λ2 − λ1, . . . , λN − λ1)
⇒ The network dynamics can be written as

ż = (λ1I− C(z)) z + D z.
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Let ϑr and ϑl be the first columns of the matrices Vγ and V>γ , i.e the
right and left eigenvectors of Aγ (and D) corresponding to the largest
eigenvalue λ1(Aγ) of the matrix Aγ (and λ1(D) = 0).

Define averaged Stuart-Landau oscillator as

zm = ϑ∗l z

Define vector of synchronization errors e ∈ CN as

e = z− ϑrzm = P z

where P = IN×N − ϑr1ϑ
∗
l1 is a projection matrix.

Remark

Vector e corresponds to the difference between the states zj of the network
oscillators and the scaled state zm of the averaged system, while the
eigenvector ϑr ∈ C corresponds to a rotation vector representing phase shifts of
the oscillators relative to zm.
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Dynamics of the averaged oscillator of zm is given by

żm = (λ1 − c|zm|2) zm + f2(zm, e)

where c =
∑N

i=1 ϑ
∗
li ϑ
∗
ri ϑ

2
ri and

f2(zm, e) =

− ϑ∗l1

 |z1|
2 + z∗1 vr11zm 0 0

0
. . . 0

0 0 |zN |2 + z∗Nvr1N zm

e

− ϑ∗l1

 (vr1zm)2 0 0

0
. . . 0

0 0 (vrNzm)2

 ē,

(7)

Dynamics of synchronization errors e is given by
ė = Dz + (λ1I− P C(z))z (8)

Model reduction across disciplines University of Leicester, UK 19-22 August 2014 7



The model Problem formulation Model description Stability analysis Example Conclusion

Practical stability of errors

Result 1
Consider the system (6) and let assumption 1 be satisfied. Then there exists a
γ̄ ≥ γ∗ such that the set S(γ) = {z ∈ CN : e(z) = 0} is uniformly globally
practically stable for all γ ≥ γ̄.

This result implies that for any arbitrary small δ > 0 we can always
find a coupling strength γ∗ > 0 such that for the network of the
Stuart-Landau oscillators with the coupling strength γ ≥ γ∗ we
have that synchronization errors errors e asymptotically satisfy the
bound

|e(t, z◦)| ≤ δ for all t ≥ t∗.
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Stability of the average dynamics

The dynamics of zm can be seen as a perturbation of a Stuart-Landau oscillator
with an input that depends on e, that is

żm = (λ1 − c|zm|2) zm + u, (9)

where u = f2(zm, e).

Result 2

Consider a Stuart-Landau oscillator

ż = −a|z |2z + bz + u (10)

with input u ∈ C, state z ∈ C and a, b ∈ C are parameters such that
Re(a) > 0. Then, the following statements hold :

(1) if Re(b) ≤ 0 then the origin z ≡ 0 is globally asymptotically stable (for
u ≡ 0) and ISS for the system (8).

(2) If Re(b) > 0 then the limit cycle A = {z : |z | =
√

Re(a)/Re(b)} is almost
globally asymptotically stable (for u ≡ 0) and almost ISS for the system (8).
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Example

– Consider a symmetric network of four oscillators :
dzj
dt =(β−|zj |2+i ωj ) zj+γ

∑4
i=1 aji (zi−zj ).

– The synchronization frequency and the amplitude of synchronous limit cycle are defined

by the eigenvalue λ1(Aγ) and its eigenvector.
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Conclusions

Synchronization of a network of diffusively coupled
Stuart-Landau oscillators with symmetric interconnection
graph was considered

Practical stability of the limiting set was proven

For general distribution of oscillators natural frequencies we
gave approximate expressions for the limit cycle and
synchronization frequency of the network.

Practical stability of the limiting set was proven.
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