On practical stability of a network of coupled nonlinear limit-cycle oscillators

Elena Panteley

Laboratoire de Signaux et Systemes - Supelec

3, Rue Joliot Curie 91190, Gif sur Yvette, France.

Consider a nonlinear oscillator described by the Stuart-Landau equations

$$\dot{z} = -|z|^2 z + \mu z = f(z,\mu),$$
 (1)

where $z \in \mathbb{C}$ is the state of the oscillator and $\mu = \beta + i\omega \in \mathbb{C}$ is a complex parameter which defines asymptotic behavior of the oscillator.

• Dynamics of a network of *N* diffusively-coupled nonlinear oscillators is described by

$$\dot{\underline{z}} = F(\underline{z}) - \gamma \ L \ \underline{z}, \tag{2}$$

where constant parameter $\gamma \in \mathbb{R}_+$ defines the coupling strength, matrix $L \in \mathbb{R}^{N \times N}$ is a Laplacian matrix, $\underline{z} = \operatorname{col}(z_1, \ldots, z_N) \in \mathbb{C}^N$ and $F(\underline{z}) = [f(z_i, \mu_i)]_{i \in \{1, \ldots, N\}}$.

Consider a nonlinear oscillator described by the Stuart-Landau equations

$$\dot{z} = -|z|^2 z + \mu z = f(z,\mu),$$
 (3)

where $z \in \mathbb{C}$ is the state of the oscillator and $\mu = \beta + i\omega \in \mathbb{C}$ is a complex parameter which defines asymptotic behavior of the oscillator.

• Dynamics of a network of *N* diffusively-coupled nonlinear oscillators is described by

$$\dot{\underline{z}} = F(\underline{z}) - \gamma \ L \ \underline{z}, \tag{4}$$

where constant parameter $\gamma \in \mathbb{R}_+$ defines the coupling strength, matrix $L \in \mathbb{R}^{N \times N}$ is a Laplacian matrix, $\underline{z} = \operatorname{col}(z_1, \ldots, z_N) \in \mathbb{C}^N$ and $F(\underline{z}) = [f(z_i, \mu_i)]_{i \in \{1, \ldots, N\}}$.

Known fact: With the increase of the coupling strength the oscillators tend to synchronize their frequencies and their trajectories converge to a common limit cycle.

Two possible frameworks for synchronization analysis :

- Analysis of relative errors
 - Asymptotic stability : $z_i(t) z_j(t)
 ightarrow 0$ as $t
 ightarrow \infty$
 - Practical stability : $\overline{\lim}_{t\to\infty} ||z_i(t) z_j(t)|| \le \delta(\gamma)$ and $\delta(\gamma) \to 0$ as $\gamma \to \infty$
- Consensus type analysis of the error relative to the "averaged" dynamics.
 - Asymptotic stability : $z_i(t) z_m(t)
 ightarrow 0$ as $t
 ightarrow \infty$
 - Practical stability : $\overline{\lim}_{t\to\infty} ||z_i(t) z_m(t)|| \le \delta(\gamma)$ and $\delta(\gamma) \to 0$ as $\gamma \to \infty$
- \Rightarrow Explicit formulation and stability analysis of the averaged dynamics $z_m(t)$.

ne model	Problem formulation	Model description	Stability analysis	Example	Conclusion					
From static to dynamic consensus										
		Static case	Dyn	Dynamic case						
Sys	tem model :	$\dot{\mathbf{x}} = -L \mathbf{x}$	$\Longrightarrow \dot{\mathbf{z}} = f$	$\Longrightarrow \dot{\mathbf{z}} = f(z,\lambda) + \tilde{L} \; \mathbf{z}$						
	eraged system : • State • Dynamics	$\begin{aligned} x_m &= \frac{1}{N} 1^\top \mathbf{x} \\ \dot{x}_m &= 0 \end{aligned}$	$\implies z_m = \\ \implies \dot{z}_m =$	$ert ec{artheta_{1/}^{ op} \mathbf{z}} \ (\lambda_1 - c z_m ^2 \ f_2(z_m, \mathbf{e})$	²) z _m +					
	chronization analysis : • Error • Error dynamics	$\begin{split} \mathbf{e} &= \mathbf{x} - 1 \mathbf{x}_{m} \\ \dot{\mathbf{e}} &= -\mathcal{L} \mathbf{e} \end{split}$	$ \Longrightarrow \mathbf{e} = \mathbf{z} \\ \Longrightarrow \dot{\mathbf{e}} = \tilde{L} $	$egin{aligned} &- artheta_{r}z_{m}\ e + (\lambda_1e - h)\ (e + z_{m}) \end{aligned}$	()					
 Stal 	bility properties :	$\begin{array}{l} Exponential \\ stability \\ e \to 0 \end{array}$	lim∥ f	$\ \mathbf{z}_2(z_m,\mathbf{e}) \ \leq (\gamma) o 0$ as γ						
Model	reduction across disciplines	University of Leices	ter, UK 19-2	2 August 2014	4					

Model description

Let us decouple network dynamics into linear and nonlinear parts

$$\dot{\mathbf{z}} = -C(\mathbf{z}) \, \mathbf{z} + (\mathcal{M} - \gamma \, L)\mathbf{z} = -C(\mathbf{z}) \, \mathbf{z} + A_{\gamma}\mathbf{z}, \tag{5}$$

where $C(z) = diag\{|z_1|^2, ..., |z_N|^2\}$, $\mathcal{M} = diag\{\mu_1, ..., \mu_N\}$ and $A_{\gamma} = \mathcal{M} - \gamma L$ is a $N \times N$ complex symmetric matrix. Let the eigenvalue of A_{γ} satisfy inequalities $Re(\lambda_1) > Re(\lambda_2) > ... > Re(\lambda_N)$.

Assumption 1

There exists $\gamma^* > 0$ such that for all $\gamma \ge \gamma^*$ there exists a complex orthogonal matrix V_{γ} such that matrix A_{γ} can be factorized as

$$A_{\gamma} = V_{\gamma} \Lambda_{\gamma} V_{\gamma}^{\top},$$

where $\Lambda_{\gamma} \in \mathbb{C}^{N \times N}$ is a diagonal matrix whose diagonal elements are the eigenvalues of A_{γ} and we assume that $Re(\lambda_1(A_{\gamma})) > Re(\lambda_2(A_{\gamma}))$.

Next, we present the matrix A_{γ} in the following form

$$A_{\gamma} = \lambda_1 \mathbb{I} + D$$

where $D = V_{\gamma} \tilde{\Lambda} V_{\gamma}^{\top}$ and $\tilde{\Lambda} = diag(0, \lambda_2 - \lambda_1, \dots, \lambda_N - \lambda_1)$ \Rightarrow The network dynamics can be written as

$$\dot{\mathbf{z}} = (\lambda_1 \mathbb{I} - C(\mathbf{z})) \mathbf{z} + D \mathbf{z}.$$

Model reduction across disciplines

University of Leicester, UK

5

- Let ϑ_r and ϑ_l be the first columns of the matrices V_{γ} and V_{γ}^{\top} , *i.e* the right and left eigenvectors of A_{γ} (and D) corresponding to the largest eigenvalue $\lambda_1(A_{\gamma})$ of the matrix A_{γ} (and $\lambda_1(D) = 0$).
- Define averaged Stuart-Landau oscillator as

$$z_m = \vartheta_l^* z$$

• Define vector of synchronization errors $\boldsymbol{e} \in \mathbb{C}^{\textit{N}}$ as

$$\mathbf{e} = \mathbf{z} - \vartheta_{\mathbf{r}} \mathbf{z}_{\mathbf{m}} = \mathsf{P} \mathbf{z}$$

where $P = I_{N \times N} - \vartheta_{r_1} \vartheta_{l_1}^*$ is a projection matrix.

Remark

Vector **e** corresponds to the difference between the states z_j of the network oscillators and the scaled state z_m of the averaged system, while the eigenvector $\vartheta_r \in \mathbb{C}$ corresponds to a rotation vector representing phase shifts of the oscillators relative to z_m .

• Dynamics of the averaged oscillator of z_m is given by

$$\dot{z}_m = \left(\lambda_1 - c |z_m|^2\right) \, z_m + \ f_2(z_m, e)$$

where $c = \sum_{i=1}^{N} \vartheta_{ii}^{*} \ \vartheta_{ri}^{*} \ \vartheta_{ri}^{2}$ and

$$\begin{split} f_{2}(\mathbf{z}_{m},\mathbf{e}) &= \\ & -\vartheta_{11}^{*} \begin{pmatrix} |z_{1}|^{2} + z_{1}^{*} v_{r_{11}} z_{m} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & |z_{N}|^{2} + z_{N}^{*} v_{r_{1N}} z_{m} \end{pmatrix} \mathbf{e} \\ & -\vartheta_{l_{1}}^{*} \begin{pmatrix} (v_{r1} z_{m})^{2} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & (v_{rN} z_{m})^{2} \end{pmatrix} \mathbf{\bar{e}}, \end{split}$$

• Dynamics of synchronization errors **e** is given by $\dot{\mathbf{e}} = D\mathbf{z} + (\lambda_1 \mathbb{I} - P \ C(\mathbf{z}))\mathbf{z}$

Model reduction across disciplines

University of Leicester, UK

Practical stability of errors

Result 1

Consider the system (6) and let assumption 1 be satisfied. Then there exists a $\bar{\gamma} \geq \gamma^*$ such that the set $S(\gamma) = \{ \mathbf{z} \in \mathbb{C}^N : \mathbf{e}(\mathbf{z}) = 0 \}$ is uniformly globally practically stable for all $\gamma \geq \bar{\gamma}$.

This result implies that for any arbitrary small $\delta > 0$ we can always find a coupling strength $\gamma^* > 0$ such that for the network of the Stuart-Landau oscillators with the coupling strength $\gamma \ge \gamma^*$ we have that synchronization errors errors e asymptotically satisfy the bound

$$|\mathbf{e}(t, \mathbf{z}_{\circ})| \leq \delta$$
 for all $t \geq t^*$.

Model reduction across disciplines

University of Leicester, UK 19-22

8

Stability of the average dynamics

The dynamics of z_m can be seen as a perturbation of a Stuart-Landau oscillator with an input that depends on **e**, that is

$$\dot{\mathsf{z}}_{\mathsf{m}} = \left(\lambda_1 - \mathsf{c} |\mathsf{z}_{\mathsf{m}}|^2\right) \, \mathsf{z}_{\mathsf{m}} + u, \tag{9}$$

where $u = f_2(z_m, e)$.

Result 2

Consider a Stuart-Landau oscillator

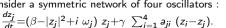
$$\dot{z} = -a|z|^2z + bz + u \tag{10}$$

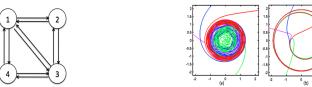
with input $u \in \mathbb{C}$, state $z \in \mathbb{C}$ and $a, b \in \mathbb{C}$ are parameters such that Re(a) > 0. Then, the following statements hold :

(1) if $Re(b) \le 0$ then the origin $z \equiv 0$ is globally asymptotically stable (for $u \equiv 0$) and ISS for the system (8).

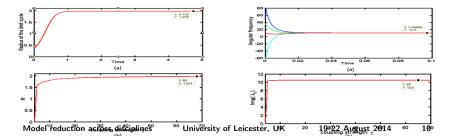
(2) If Re(b) > 0 then the limit cycle $A = \{z : |z| = \sqrt{Re(a)/Re(b)}\}$ is almost globally asymptotically stable (for $u \equiv 0$) and almost ISS for the system (8).

The model	Problem formulation	Model description	Stability analysis	Example	Conclusion				
Example									
- Consider a symmetric network of four oscillators : $\frac{dz_i}{dz_i} = (a_i + a_i) + (a_i + a_i) = (a_i + a_i)$									





- The synchronization frequency and the amplitude of synchronous limit cycle are defined by the eigenvalue $\lambda_1(A_{\gamma})$ and its eigenvector.



- Synchronization of a network of diffusively coupled Stuart-Landau oscillators with symmetric interconnection graph was considered
- Practical stability of the limiting set was proven
- For general distribution of oscillators natural frequencies we gave approximate expressions for the limit cycle and synchronization frequency of the network.
- Practical stability of the limiting set was proven.