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Fermi - Ulam Model
1-d billiard with oscillating boundary
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Elastic reflection in the moving frame

vn+1 − un = −(vn − un)

vn+1 = 2un − vn

(−1)n+1vn+1 = (−1)nvn + 2(−1)n+1un

(−1)nvn performs a random walk



Elastic reflection in the moving frame
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Linear in the number of collisions

tn+1 − tn ∼ 1√
n

tn ∼
√
n

Quadratic in time



Smoothly moving boundary

No Accelaration

L(t)



Smoothly moving boundary

(Pustylnikov, Kamphorst, Sylva, Markaryan)

If  L(t) is (quasi)periodic (and at least       ) then 
KAM-theory implies that           stays close to its 

initial value for all times

C4

L(t)v

No Accelaration

L(t)



In d-dimensional (         ) billiards with smoothly oscillating 
boundaries chaotic motion of the particles creates 

randomness necessary for the acceleration

Loskutov, Ryabov, Akinshin (numerics)

Chaos leads to Polynomial Energy Growth

d ≥ 2



Polynomial Energy growth is fragile

arbitrarily weak linear dissipation stops the acceleration

 Leonel  and Bunimovich, Phys. Rev. Lett. 104, 224101 (2010)



Obstruction for Fast Growth

Ergodicity of the particle motion (frozen)

Rom Kedar, Gelfreich, Turaev, MacKay



Obstruction for Fast Growth

Anosov-Kasuga invariant

Ed/2V ≈ constant

Adiabatic Invariance

dV

dt
= 0



Fast Growth

Adiabatic Invariance

Ed/2(0)V (0) ≈ Ed/2(T )V (T )

Ergodicity Breaking

V (0) �= V (T )



Fast Growth

After one period

E(T ) = E(0)×
�
V (0)

V (T )

�2/d



Numerical Results
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We start with detailed numerical results in a two pa-
rameter family of homogeneous Hamiltonians with two
degrees of freedom. We show that changing parameters
only in the chaotic regime leads at most to a polyno-
mial energy growth, whereas breaking ergodicity leads to
exponential energy growth. Later on, we proceed with
the general theory for Hamiltonians with homogeneous
potentials.

We focus on the family of quartic homogeneous poten-
tials with two degrees of freedom. Introducing the nota-
tion q = (q1, q2) and p = (p1, p2) and τ(t) = (a(t), b(t)),
we have

H(p, q, τ(t)) =
1
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We chose this Hamiltonian because it has been thor-
oughly studied [24, 25]. We perform a numerical integra-
tion (in the extended phase space). Because the potential
is homogeneous the dynamical regime does not change as
a function of the energy. To avoid numerical artifacts in
behavior of the energy we rescale the energy to the level
E0 after a full cycle of the parameters (see Methods).

After n periods of τ the energy En/E0 =
Πn−1

k=1Ek/Ek−1 can change exponentially as a function of
n. The exponential growth rate of En/E0 is then quan-
tified by

r(n) =
1

n

n�

k=1

ln ζk.

Hence, we consider the asymptotic growth rate of a sin-
gle orbit rso = limn→∞ r(n), if the limit exists and
is bounded away from zero it captures the exponential
growth rate of a single orbit.

Ergodicity and polynomial energy growth: If for each
frozen value of the parameters the Hamiltonian is
strongly chaotic, we observe only polynomial energy
growth. For instance, for a = 0.01 and b = 1.5 +
cos(2πt/T ), the energy growth is quadratic, see Fig. 1.
The inset of Fig. 1 shows the rate r(n) and indicates
that rso = 0, corroborating the lack to exponential en-
ergy growth.
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FIG. 1: Polynomial energy growth in ergodic regime.
We change parameters along the chaotic regime only, and
show the ensemble energy growth. In the inset we show the
rate rso for these two trajectories, which reach a limit rso = 0
corresponding to no exponential energy growth.

Ergodicity breaking leads to exponential energy growth.
We consider a case in which the parameters go through
chaotic and periodic regions in the parameter space corre-
sponding to the cycle displayed in Fig. 2 a). Performing
multiple cycles we observe an exponential energy growth.
In Figure 2 b) we plot the y−axis in log scale, We

observe two distinct rates first the ensemble rate
and then a crossover to single orbit rate. In Figure
2 c) we show the rates for single orbits for two distinct ini-
tial conditions. The inset of c) corresponds to a zoom for
a smaller number of cycles. The exponential rate reaches
a limit r(n) → rso ≈ 0.023. Since the Hamiltonian has
only a few degrees of freedom, we consider the entropy in
the sense Hertz. That is, the entropy of microcanonical
distribution is described by ln(Ω) where Ω is the volume
bounded by the energy surface, not the volume of the
energy surface. Consider the entropy Sn = lnEn, and
the change in entropy ∆Sn = Sn+1−Sn. Our model Eq.
(1) for energies provides a random walk model for the
entropy changes ∆Sn = ln ζn, which leads to a geometric
Brownian motion for the energies. In particular the dis-
tribution of the lnEn tends to a Gaussian for large times,
as seen in Figure 4 c) and d).
General Setting: A Hamiltonian H(q, p) is homoge-

neous if for any E > 0 there exists a coordinate transfor-
mation that keeps the system the same, sends the energy
level H = 1 to H = E, and has a constant Jacobian
J(E) = E

α, α > 0. We will assume that the positive
energy levels are compact, so J(E) = V (E)/V (1) where
V (E) is the volume of the (q, p)-space between the en-
ergy levels H = E and H = 0. Thus, we can label the
points in the phase space (p, q) by the coordinates (x,E)
where E is the energy and x is a projection to the energy
level H = 1, see Fig. 4.
Now we consider the family of adiabatically changing

homogeneous Hamiltonians H(p, q, τ). Then, a theorem
by Anosov is applied. Namely, if the frozen system is er-
godic on every energy level with respect to the Liouville
measure µ = δ(E − H(p, q, τ))dpdq. We are guaranteed
that averaging over this measure gives a good approxi-
mation of the slow evolution of the energy for a large set
of initial conditions:

Ė =

�
∂H

∂τ
(p, q, τ)δ(E −H(p, q, τ))dpdq
�

δ(E −H(p, q, τ))dpdq
τ̇ . (3)

By analogy, in the case when the frozen system is not
ergodic we may assume that the slow evolution of the
energy is given by an averaged equation

Ė =

�
∂H

∂τ
δ(E −H)µτ (dx) τ̇ (4)

where µτ is a certain ergodic measure on the space of fast
variables. This measure can depend on τ and be differ-
ent for different initial conditions. Choose some family

Homogeneous Potential
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FIG. 2: Exponential energy growth. a) Parameter space for the quartic Hamiltonian system in Eq. 3. Parameters are

chosen such that the frozen Hamiltonian exhibit chaotic (along a = 0.01) periodic motion (along b = 0) and mixed behaviour

(along the connecting arc). The insets show the dynamics of the frozen Hamiltonian. Performing the cycle leads to exponential

growth of energy. In b) we show the ensemble energy growth with the y−axis in log scale. In c) the exponential rate for two

single orbits, and the inset the rates for a short number of cycles. The limiting behaviour rso ≈ 0.023 shows the exponential

growth.
0.01 0.1 1

m2

0.01

0.1

1

r s
o

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

 

 

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

2

2.5

 

 

b) c)

0.4−0.4 0
0

1

2

−1 0 1 2
0

0.4

0.8

−2

ρ[
ln
(E

n
/E

0
)]

ln(E1/E0)] ln(E9/E0)]

a)

FIG. 3: Distribution of Energies is log-normal. We show

the distribution of energies for an ensemble of 2×10
4
particles

starting randomly distributed in the energy shell E0. After a

number of cycles the logarithm of the energies are distributed

according to a Gaussian.
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FIG. 4: Projection to energy level H = 1. a) Points in the

phase space (p, q) can by represented in terms of the coor-

dinates (x, E). b) the volume of all ergodic components is

normalised.

µτ and let M be a set of initial x values for which the
evolution of the energy over the period of τ is given by
the averaged equation (4) for all τ . Let E0 and E1 be
two sufficiently large values of energy. If the points with
initial conditions E = E0, x ∈ M move to the energy
level E = Ē0 = e

λ
E0 after the period of τ , then the

points with initial conditions E = E1, x ∈ M move to
the level E = Ē1 = e

λ
E1, by the homogeneity of (4).

Now note that the non-averaged system preserves volume
in the (p, q)-space, because the full system is divergence
free. Therefore, it follows that the volume occupied by
the points with x ∈ M between the levels E = E0 and
E = E1 equals to the volume occupied by the points with
x ∈ M̄ between the levels E = Ē0 and E = Ē1, where
M̄ denotes the image of the set M by the flow of the full
system after the period of τ . This gives us

αλ = ln(v(M)/v(M̄)) (5)

where v is the volume in the x-space (at the level H = 1).
Let at least at some value of τ the frozen system be

chaotic in a sufficiently strong sense. Namely, we assume
that the system relaxes to the Liouville measure on each
energy level. This does not fix distribution of energies,
which is denoted by ρ(E). We can, at this value of τ ,
define the entropy of the system as an averaged value of
the ln(V (E)/V (1)) = ln J(E), that is,

S = α

�
�lnE�dx,

where the integral is taken over the x-space (and we as-
sume its volume is scaled to 1), and the average value
of lnE in the integral is with respect the distribution of
energies ρ(E), and is computed at each fixed x. By (5),
the change of the entropy over the period of τ is

∆S =
�

v(Mk) ln

�
v(Mk)

v(M̄k)

�
(6)

where the sum is taken over all sets Mk. (each cor-
responding to each own family of measures µτ ). As�

v(Mk) =
�

v(M̄k) = 1, because the volume of the
x-space is normalised, and we have

∆S ≥ 0.

Parameter Space
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Exponential energy growth in adiabatically changing Hamiltonian Systems
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Fermi acceleration is the process of energy

transfer from massive objects in slow motion to

light objects that move fast [1]. The model for

such process is a time-dependent Hamiltonian

system. As the parameters of the system change

with time, the energy is no longer conserved,

which makes the acceleration possible. The ac-

celeration has been extensively studied for the

billiards with oscillating boundaries. The bulk of

numerical studies shows that the possible energy

growth is polynomial in time. [15, 16, 18, 19].

This regime of energy growth can be easily de-

stroyed by an arbitrarily small dissipation [7].

The main obstruction for fast energy growth is

the ergodicity of the particle motion [9]. Re-

cently, an example of a breathing billiard with a

robust exponential energy growth due to a break-

up of ergodicity was proposed [10]. Here we show

that the effect has a fundamental nature, going far

beyond the billiard dynamics: the non-ergodicity

of any chaotic Hamiltonian system must univer-

sally lead to the exponential growth of energy at

a slow periodic variation of parameters.

Fermi proposed an energy transfer mechanism from

massive objects to light objects to explain the abnormal

high energy of cosmic rays. Particles performing fast

motion would gain energy from the interaction with slow

moving massive objectives and thereby increase their en-

ergy [1]. This phenomenon is now called Fermi accelera-

tion. Despite of intensive research on this energy transfer

mechanism it remains unclear how effective is the energy
transfer.

Most efforts to understand this mechanism have fo-

cused on the energy growth of particles in billiards with

a periodically oscillating boundary [9]. A comprehensive

theory of this phenomenon, proposed in [9], predicts the

growth of kinetic energy which is at most polynomially in

time, in agreement with numerical studies [13–16]. For

the billiard with slowly moving boundaries, the energy

can grow at most polynomially in time because the er-

godicity of the particle dynamics in the static billiard

leads to the existence of an Anosov-Kasuga adiabatic in-

variant [9, 10, 12, 20–22]. The polynomial energy growth

can make the Fermi acceleration makes it a fragile phe-

nomenon because an arbitrarily weak linear dissipation

stops the acceleration [7]. Recently, examples of robust

exponential energy growth were obtained once the ergod-

icity of the frozen billiard was broken [9, 10].

Here, we demonstrate that the non-ergodicity of a

chaotic Hamiltonian system with few degrees of freedom

must universally lead to the exponential growth of energy

at a slow (adiabatic) periodic variation of parameters of

the system. We argue that the key mechanism is the

following: Typical adiabatic changes in parameters leads

the frozen Hamiltonian to exhibit integrable and strongly

chaotic dynamics. We introduce a notion of entropy and

show that the changes in the number of ergodic compo-

nents leads to a linear increase of entropy, which in turns

yields an exponential energy growth. For an ensemble of

initial conditions uniformly distributed in a sufficiently

high level of energy, we show that the long-term evolution

of the energy can be modelled by a geometric Brownian

motion with a positive growth rate, the same for almost

every initial condition.

We consider a family of homogeneous Hamiltonians

H(p, q, τ) and assume that the parameter τ changes pe-

riodically with time with period T . The energy E =

H(p, q, τ) will be no longer preserved by the system:

Ė = (∂H/∂τ)τ̇ . We assume an adiabatic change of pa-

rameters. That is, τ and lnE are much slower than

the dynamics in the phase space. We also assume that

∂H/∂τ has the same order as H, so the speed of change

of lnE will be comparable with τ̇ . Lets start the Hamil-

tonian with energy E0 = H(p, q, τ(0)) and denote by

En = H(p, q, τ(nT )) the energy after n periods. Now

assume that during one period of parameters τ the dy-

namics spends enough time in a regime of strong chaos.

Our first claim is that at high energies we have

En+1 = Enζn, (1)

where ζn is an independent random variable. Later on

we give a mathematical formulation of this energy model.

For now, the reasoning for this model is that changes in

energy after a cycle must be proportional to the energy

because the Hamiltonian is homogeneous and ∂H/∂τ is of

order H. Moreover, ζn must be an independent random

variable because of the strong chaos in the system for

certain frozen values of the parameters.

Our main claim is that typically adiabatic changes in

parameters lead

E ln ζi > 0, (2)

along a typical change of parameters the frozen dynamics

is phase space splits into distinct ergodic components (for

the frozen system). This positive bias in Eq. (2) leads

to exponential energy growth for a large set of initial

points. Combining Eq. (1) and (2), we obtain a geomet-

ric random walk for the energy increase. If the dynamics

in the cycle is ergodic adiabatic invariance shows that

E ln ζi = 0, and there is entropy growth.

Homogeneity of the potential

independent random variableζn

lnEn performs a random walk
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such process is a time-dependent Hamiltonian

system. As the parameters of the system change

with time, the energy is no longer conserved,

which makes the acceleration possible. The ac-

celeration has been extensively studied for the

billiards with oscillating boundaries. The bulk of

numerical studies shows that the possible energy

growth is polynomial in time. [15, 16, 18, 19].

This regime of energy growth can be easily de-

stroyed by an arbitrarily small dissipation [7].

The main obstruction for fast energy growth is

the ergodicity of the particle motion [9]. Re-

cently, an example of a breathing billiard with a

robust exponential energy growth due to a break-

up of ergodicity was proposed [10]. Here we show

that the effect has a fundamental nature, going far

beyond the billiard dynamics: the non-ergodicity

of any chaotic Hamiltonian system must univer-

sally lead to the exponential growth of energy at

a slow periodic variation of parameters.

Fermi proposed an energy transfer mechanism from

massive objects to light objects to explain the abnormal

high energy of cosmic rays. Particles performing fast

motion would gain energy from the interaction with slow

moving massive objectives and thereby increase their en-

ergy [1]. This phenomenon is now called Fermi accelera-

tion. Despite of intensive research on this energy transfer

mechanism it remains unclear how effective is the energy
transfer.

Most efforts to understand this mechanism have fo-

cused on the energy growth of particles in billiards with

a periodically oscillating boundary [9]. A comprehensive

theory of this phenomenon, proposed in [9], predicts the

growth of kinetic energy which is at most polynomially in

time, in agreement with numerical studies [13–16]. For

the billiard with slowly moving boundaries, the energy

can grow at most polynomially in time because the er-

godicity of the particle dynamics in the static billiard

leads to the existence of an Anosov-Kasuga adiabatic in-

variant [9, 10, 12, 20–22]. The polynomial energy growth

can make the Fermi acceleration makes it a fragile phe-

nomenon because an arbitrarily weak linear dissipation

stops the acceleration [7]. Recently, examples of robust

exponential energy growth were obtained once the ergod-

icity of the frozen billiard was broken [9, 10].

Here, we demonstrate that the non-ergodicity of a

chaotic Hamiltonian system with few degrees of freedom

must universally lead to the exponential growth of energy

at a slow (adiabatic) periodic variation of parameters of
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following: Typical adiabatic changes in parameters leads

the frozen Hamiltonian to exhibit integrable and strongly

chaotic dynamics. We introduce a notion of entropy and

show that the changes in the number of ergodic compo-

nents leads to a linear increase of entropy, which in turns

yields an exponential energy growth. For an ensemble of

initial conditions uniformly distributed in a sufficiently

high level of energy, we show that the long-term evolution

of the energy can be modelled by a geometric Brownian

motion with a positive growth rate, the same for almost

every initial condition.

We consider a family of homogeneous Hamiltonians

H(p, q, τ) and assume that the parameter τ changes pe-

riodically with time with period T . The energy E =

H(p, q, τ) will be no longer preserved by the system:
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Our first claim is that at high energies we have
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we give a mathematical formulation of this energy model.

For now, the reasoning for this model is that changes in

energy after a cycle must be proportional to the energy

because the Hamiltonian is homogeneous and ∂H/∂τ is of

order H. Moreover, ζn must be an independent random

variable because of the strong chaos in the system for

certain frozen values of the parameters.

Our main claim is that typically adiabatic changes in

parameters lead

E ln ζi > 0, (2)

along a typical change of parameters the frozen dynamics

is phase space splits into distinct ergodic components (for

the frozen system). This positive bias in Eq. (2) leads

to exponential energy growth for a large set of initial

points. Combining Eq. (1) and (2), we obtain a geomet-

ric random walk for the energy increase. If the dynamics

in the cycle is ergodic adiabatic invariance shows that

E ln ζi = 0, and there is entropy growth.
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We start with detailed numerical results in a two pa-
rameter family of homogeneous Hamiltonians with two
degrees of freedom. We show that changing parameters
only in the chaotic regime leads at most to a polyno-
mial energy growth, whereas breaking ergodicity leads to
exponential energy growth. Later on, we proceed with
the general theory for Hamiltonians with homogeneous
potentials.

We focus on the family of quartic homogeneous poten-
tials with two degrees of freedom. Introducing the nota-
tion q = (q1, q2) and p = (p1, p2) and τ(t) = (a(t), b(t)),
we have

H(p, q, τ(t)) =
1

2
p
2
1 +
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p
2
2 +
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�
q
4
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4
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We chose this Hamiltonian because it has been thor-
oughly studied [24, 25]. We perform a numerical integra-
tion (in the extended phase space). Because the potential
is homogeneous the dynamical regime does not change as
a function of the energy. To avoid numerical artifacts in
behavior of the energy we rescale the energy to the level
E0 after a full cycle of the parameters (see Methods).

After n periods of τ the energy En/E0 =
Πn−1

k=1Ek/Ek−1 can change exponentially as a function of
n. The exponential growth rate of En/E0 is then quan-
tified by

r(n) =
1

n

n�

k=1

ln ζk.

Hence, we consider the asymptotic growth rate of a sin-
gle orbit rso = limn→∞ r(n), if the limit exists and
is bounded away from zero it captures the exponential
growth rate of a single orbit.

Ergodicity and polynomial energy growth: If for each
frozen value of the parameters the Hamiltonian is
strongly chaotic, we observe only polynomial energy
growth. For instance, for a = 0.01 and b = 1.5 +
cos(2πt/T ), the energy growth is quadratic, see Fig. 1.
The inset of Fig. 1 shows the rate r(n) and indicates
that rso = 0, corroborating the lack to exponential en-
ergy growth.
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FIG. 1: Polynomial energy growth in ergodic regime.
We change parameters along the chaotic regime only, and
show the ensemble energy growth. In the inset we show the
rate rso for these two trajectories, which reach a limit rso = 0
corresponding to no exponential energy growth.

Ergodicity breaking leads to exponential energy growth.
We consider a case in which the parameters go through
chaotic and periodic regions in the parameter space corre-
sponding to the cycle displayed in Fig. 2 a). Performing
multiple cycles we observe an exponential energy growth.
In Figure 2 b) we plot the y−axis in log scale, We

observe two distinct rates first the ensemble rate
and then a crossover to single orbit rate. In Figure
2 c) we show the rates for single orbits for two distinct ini-
tial conditions. The inset of c) corresponds to a zoom for
a smaller number of cycles. The exponential rate reaches
a limit r(n) → rso ≈ 0.023. Since the Hamiltonian has
only a few degrees of freedom, we consider the entropy in
the sense Hertz. That is, the entropy of microcanonical
distribution is described by ln(Ω) where Ω is the volume
bounded by the energy surface, not the volume of the
energy surface. Consider the entropy Sn = lnEn, and
the change in entropy ∆Sn = Sn+1−Sn. Our model Eq.
(1) for energies provides a random walk model for the
entropy changes ∆Sn = ln ζn, which leads to a geometric
Brownian motion for the energies. In particular the dis-
tribution of the lnEn tends to a Gaussian for large times,
as seen in Figure 4 c) and d).
General Setting: A Hamiltonian H(q, p) is homoge-

neous if for any E > 0 there exists a coordinate transfor-
mation that keeps the system the same, sends the energy
level H = 1 to H = E, and has a constant Jacobian
J(E) = E

α, α > 0. We will assume that the positive
energy levels are compact, so J(E) = V (E)/V (1) where
V (E) is the volume of the (q, p)-space between the en-
ergy levels H = E and H = 0. Thus, we can label the
points in the phase space (p, q) by the coordinates (x,E)
where E is the energy and x is a projection to the energy
level H = 1, see Fig. 4.
Now we consider the family of adiabatically changing

homogeneous Hamiltonians H(p, q, τ). Then, a theorem
by Anosov is applied. Namely, if the frozen system is er-
godic on every energy level with respect to the Liouville
measure µ = δ(E − H(p, q, τ))dpdq. We are guaranteed
that averaging over this measure gives a good approxi-
mation of the slow evolution of the energy for a large set
of initial conditions:

Ė =

�
∂H

∂τ
(p, q, τ)δ(E −H(p, q, τ))dpdq
�

δ(E −H(p, q, τ))dpdq
τ̇ . (3)

By analogy, in the case when the frozen system is not
ergodic we may assume that the slow evolution of the
energy is given by an averaged equation

Ė =

�
∂H

∂τ
δ(E −H)µτ (dx) τ̇ (4)

where µτ is a certain ergodic measure on the space of fast
variables. This measure can depend on τ and be differ-
ent for different initial conditions. Choose some family
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We start with detailed numerical results in a two pa-
rameter family of homogeneous Hamiltonians with two
degrees of freedom. We show that changing parameters
only in the chaotic regime leads at most to a polyno-
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potentials.
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We chose this Hamiltonian because it has been thor-
oughly studied [24, 25]. We perform a numerical integra-
tion (in the extended phase space). Because the potential
is homogeneous the dynamical regime does not change as
a function of the energy. To avoid numerical artifacts in
behavior of the energy we rescale the energy to the level
E0 after a full cycle of the parameters (see Methods).

After n periods of τ the energy En/E0 =
Πn−1

k=1Ek/Ek−1 can change exponentially as a function of
n. The exponential growth rate of En/E0 is then quan-
tified by

r(n) =
1

n

n�

k=1

ln ζk.

Hence, we consider the asymptotic growth rate of a sin-
gle orbit rso = limn→∞ r(n), if the limit exists and
is bounded away from zero it captures the exponential
growth rate of a single orbit.

Ergodicity and polynomial energy growth: If for each
frozen value of the parameters the Hamiltonian is
strongly chaotic, we observe only polynomial energy
growth. For instance, for a = 0.01 and b = 1.5 +
cos(2πt/T ), the energy growth is quadratic, see Fig. 1.
The inset of Fig. 1 shows the rate r(n) and indicates
that rso = 0, corroborating the lack to exponential en-
ergy growth.
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FIG. 1: Polynomial energy growth in ergodic regime.
We change parameters along the chaotic regime only, and
show the ensemble energy growth. In the inset we show the
rate rso for these two trajectories, which reach a limit rso = 0
corresponding to no exponential energy growth.

Ergodicity breaking leads to exponential energy growth.
We consider a case in which the parameters go through
chaotic and periodic regions in the parameter space corre-
sponding to the cycle displayed in Fig. 2 a). Performing
multiple cycles we observe an exponential energy growth.
In Figure 2 b) we plot the y−axis in log scale, We

observe two distinct rates first the ensemble rate
and then a crossover to single orbit rate. In Figure
2 c) we show the rates for single orbits for two distinct ini-
tial conditions. The inset of c) corresponds to a zoom for
a smaller number of cycles. The exponential rate reaches
a limit r(n) → rso ≈ 0.023. Since the Hamiltonian has
only a few degrees of freedom, we consider the entropy in
the sense Hertz. That is, the entropy of microcanonical
distribution is described by ln(Ω) where Ω is the volume
bounded by the energy surface, not the volume of the
energy surface. Consider the entropy Sn = lnEn, and
the change in entropy ∆Sn = Sn+1−Sn. Our model Eq.
(1) for energies provides a random walk model for the
entropy changes ∆Sn = ln ζn, which leads to a geometric
Brownian motion for the energies. In particular the dis-
tribution of the lnEn tends to a Gaussian for large times,
as seen in Figure 4 c) and d).
General Setting: A Hamiltonian H(q, p) is homoge-

neous if for any E > 0 there exists a coordinate transfor-
mation that keeps the system the same, sends the energy
level H = 1 to H = E, and has a constant Jacobian
J(E) = E

α, α > 0. We will assume that the positive
energy levels are compact, so J(E) = V (E)/V (1) where
V (E) is the volume of the (q, p)-space between the en-
ergy levels H = E and H = 0. Thus, we can label the
points in the phase space (p, q) by the coordinates (x,E)
where E is the energy and x is a projection to the energy
level H = 1, see Fig. 4.
Now we consider the family of adiabatically changing

homogeneous Hamiltonians H(p, q, τ). Then, a theorem
by Anosov is applied. Namely, if the frozen system is er-
godic on every energy level with respect to the Liouville
measure µ = δ(E − H(p, q, τ))dpdq. We are guaranteed
that averaging over this measure gives a good approxi-
mation of the slow evolution of the energy for a large set
of initial conditions:

Ė =

�
∂H

∂τ
(p, q, τ)δ(E −H(p, q, τ))dpdq
�

δ(E −H(p, q, τ))dpdq
τ̇ . (3)

By analogy, in the case when the frozen system is not
ergodic we may assume that the slow evolution of the
energy is given by an averaged equation

Ė =

�
∂H

∂τ
δ(E −H)µτ (dx) τ̇ (4)

where µτ is a certain ergodic measure on the space of fast
variables. This measure can depend on τ and be differ-
ent for different initial conditions. Choose some family
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tion (in the extended phase space). Because the potential
is homogeneous the dynamical regime does not change as
a function of the energy. To avoid numerical artifacts in
behavior of the energy we rescale the energy to the level
E0 after a full cycle of the parameters (see Methods).
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growth rate of a single orbit.

Ergodicity and polynomial energy growth: If for each
frozen value of the parameters the Hamiltonian is
strongly chaotic, we observe only polynomial energy
growth. For instance, for a = 0.01 and b = 1.5 +
cos(2πt/T ), the energy growth is quadratic, see Fig. 1.
The inset of Fig. 1 shows the rate r(n) and indicates
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We change parameters along the chaotic regime only, and
show the ensemble energy growth. In the inset we show the
rate rso for these two trajectories, which reach a limit rso = 0
corresponding to no exponential energy growth.

Ergodicity breaking leads to exponential energy growth.
We consider a case in which the parameters go through
chaotic and periodic regions in the parameter space corre-
sponding to the cycle displayed in Fig. 2 a). Performing
multiple cycles we observe an exponential energy growth.
In Figure 2 b) we plot the y−axis in log scale, We

observe two distinct rates first the ensemble rate
and then a crossover to single orbit rate. In Figure
2 c) we show the rates for single orbits for two distinct ini-
tial conditions. The inset of c) corresponds to a zoom for
a smaller number of cycles. The exponential rate reaches
a limit r(n) → rso ≈ 0.023. Since the Hamiltonian has
only a few degrees of freedom, we consider the entropy in
the sense Hertz. That is, the entropy of microcanonical
distribution is described by ln(Ω) where Ω is the volume
bounded by the energy surface, not the volume of the
energy surface. Consider the entropy Sn = lnEn, and
the change in entropy ∆Sn = Sn+1−Sn. Our model Eq.
(1) for energies provides a random walk model for the
entropy changes ∆Sn = ln ζn, which leads to a geometric
Brownian motion for the energies. In particular the dis-
tribution of the lnEn tends to a Gaussian for large times,
as seen in Figure 4 c) and d).
General Setting: A Hamiltonian H(q, p) is homoge-

neous if for any E > 0 there exists a coordinate transfor-
mation that keeps the system the same, sends the energy
level H = 1 to H = E, and has a constant Jacobian
J(E) = E

α, α > 0. We will assume that the positive
energy levels are compact, so J(E) = V (E)/V (1) where
V (E) is the volume of the (q, p)-space between the en-
ergy levels H = E and H = 0. Thus, we can label the
points in the phase space (p, q) by the coordinates (x,E)
where E is the energy and x is a projection to the energy
level H = 1, see Fig. 4.
Now we consider the family of adiabatically changing

homogeneous Hamiltonians H(p, q, τ). Then, a theorem
by Anosov is applied. Namely, if the frozen system is er-
godic on every energy level with respect to the Liouville
measure µ = δ(E − H(p, q, τ))dpdq. We are guaranteed
that averaging over this measure gives a good approxi-
mation of the slow evolution of the energy for a large set
of initial conditions:

Ė =
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By analogy, in the case when the frozen system is not
ergodic we may assume that the slow evolution of the
energy is given by an averaged equation

Ė =
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where µτ is a certain ergodic measure on the space of fast
variables. This measure can depend on τ and be differ-
ent for different initial conditions. Choose some family
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Fermi acceleration is the process of energy

transfer from massive objects in slow motion to

light objects that move fast [1]. The model for

such process is a time-dependent Hamiltonian

system. As the parameters of the system change

with time, the energy is no longer conserved,

which makes the acceleration possible. The ac-

celeration has been extensively studied for the

billiards with oscillating boundaries. The bulk of

numerical studies shows that the possible energy

growth is polynomial in time. [15, 16, 18, 19].

This regime of energy growth can be easily de-

stroyed by an arbitrarily small dissipation [7].

The main obstruction for fast energy growth is

the ergodicity of the particle motion [9]. Re-

cently, an example of a breathing billiard with a

robust exponential energy growth due to a break-

up of ergodicity was proposed [10]. Here we show

that the effect has a fundamental nature, going far

beyond the billiard dynamics: the non-ergodicity

of any chaotic Hamiltonian system must univer-

sally lead to the exponential growth of energy at

a slow periodic variation of parameters.

Fermi proposed an energy transfer mechanism from

massive objects to light objects to explain the abnormal

high energy of cosmic rays. Particles performing fast

motion would gain energy from the interaction with slow

moving massive objectives and thereby increase their en-

ergy [1]. This phenomenon is now called Fermi accelera-

tion. Despite of intensive research on this energy transfer

mechanism it remains unclear how effective is the energy
transfer.

Most efforts to understand this mechanism have fo-

cused on the energy growth of particles in billiards with

a periodically oscillating boundary [9]. A comprehensive

theory of this phenomenon, proposed in [9], predicts the

growth of kinetic energy which is at most polynomially in

time, in agreement with numerical studies [13–16]. For

the billiard with slowly moving boundaries, the energy

can grow at most polynomially in time because the er-

godicity of the particle dynamics in the static billiard

leads to the existence of an Anosov-Kasuga adiabatic in-

variant [9, 10, 12, 20–22]. The polynomial energy growth

can make the Fermi acceleration makes it a fragile phe-

nomenon because an arbitrarily weak linear dissipation

stops the acceleration [7]. Recently, examples of robust

exponential energy growth were obtained once the ergod-

icity of the frozen billiard was broken [9, 10].

Here, we demonstrate that the non-ergodicity of a

chaotic Hamiltonian system with few degrees of freedom

must universally lead to the exponential growth of energy

at a slow (adiabatic) periodic variation of parameters of

the system. We argue that the key mechanism is the

following: Typical adiabatic changes in parameters leads

the frozen Hamiltonian to exhibit integrable and strongly

chaotic dynamics. We introduce a notion of entropy and

show that the changes in the number of ergodic compo-

nents leads to a linear increase of entropy, which in turns

yields an exponential energy growth. For an ensemble of

initial conditions uniformly distributed in a sufficiently

high level of energy, we show that the long-term evolution

of the energy can be modelled by a geometric Brownian

motion with a positive growth rate, the same for almost

every initial condition.

We consider a family of homogeneous Hamiltonians

H(p, q, τ) and assume that the parameter τ changes pe-

riodically with time with period T . The energy E =

H(p, q, τ) will be no longer preserved by the system:

Ė = (∂H/∂τ)τ̇ . We assume an adiabatic change of pa-

rameters. That is, τ and lnE are much slower than

the dynamics in the phase space. We also assume that

∂H/∂τ has the same order as H, so the speed of change

of lnE will be comparable with τ̇ . Lets start the Hamil-

tonian with energy E0 = H(p, q, τ(0)) and denote by

En = H(p, q, τ(nT )) the energy after n periods. Now

assume that during one period of parameters τ the dy-

namics spends enough time in a regime of strong chaos.

Our first claim is that at high energies we have

En+1 = Enζn, (1)

where ζn is an independent random variable. Later on

we give a mathematical formulation of this energy model.

For now, the reasoning for this model is that changes in

energy after a cycle must be proportional to the energy

because the Hamiltonian is homogeneous and ∂H/∂τ is of

order H. Moreover, ζn must be an independent random

variable because of the strong chaos in the system for

certain frozen values of the parameters.

Our main claim is that typically adiabatic changes in

parameters lead

E ln ζi > 0, (2)

along a typical change of parameters the frozen dynamics

is phase space splits into distinct ergodic components (for

the frozen system). This positive bias in Eq. (2) leads

to exponential energy growth for a large set of initial

points. Combining Eq. (1) and (2), we obtain a geomet-

ric random walk for the energy increase. If the dynamics

in the cycle is ergodic adiabatic invariance shows that

E ln ζi = 0, and there is entropy growth.
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FIG. 2: Exponential energy growth. a) Parameter space for the quartic Hamiltonian system in Eq. 3. Parameters are

chosen such that the frozen Hamiltonian exhibit chaotic (along a = 0.01) periodic motion (along b = 0) and mixed behaviour

(along the connecting arc). The insets show the dynamics of the frozen Hamiltonian. Performing the cycle leads to exponential
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the distribution of energies for an ensemble of 2×10
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number of cycles the logarithm of the energies are distributed

according to a Gaussian.
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FIG. 4: Projection to energy level H = 1. a) Points in the

phase space (p, q) can by represented in terms of the coor-

dinates (x, E). b) the volume of all ergodic components is

normalised.

µτ and let M be a set of initial x values for which the
evolution of the energy over the period of τ is given by
the averaged equation (4) for all τ . Let E0 and E1 be
two sufficiently large values of energy. If the points with
initial conditions E = E0, x ∈ M move to the energy
level E = Ē0 = e

λ
E0 after the period of τ , then the

points with initial conditions E = E1, x ∈ M move to
the level E = Ē1 = e

λ
E1, by the homogeneity of (4).

Now note that the non-averaged system preserves volume
in the (p, q)-space, because the full system is divergence
free. Therefore, it follows that the volume occupied by
the points with x ∈ M between the levels E = E0 and
E = E1 equals to the volume occupied by the points with
x ∈ M̄ between the levels E = Ē0 and E = Ē1, where
M̄ denotes the image of the set M by the flow of the full
system after the period of τ . This gives us

αλ = ln(v(M)/v(M̄)) (5)

where v is the volume in the x-space (at the level H = 1).
Let at least at some value of τ the frozen system be

chaotic in a sufficiently strong sense. Namely, we assume
that the system relaxes to the Liouville measure on each
energy level. This does not fix distribution of energies,
which is denoted by ρ(E). We can, at this value of τ ,
define the entropy of the system as an averaged value of
the ln(V (E)/V (1)) = ln J(E), that is,

S = α

�
�lnE�dx,

where the integral is taken over the x-space (and we as-
sume its volume is scaled to 1), and the average value
of lnE in the integral is with respect the distribution of
energies ρ(E), and is computed at each fixed x. By (5),
the change of the entropy over the period of τ is

∆S =
�

v(Mk) ln

�
v(Mk)

v(M̄k)

�
(6)

where the sum is taken over all sets Mk. (each cor-
responding to each own family of measures µτ ). As�

v(Mk) =
�

v(M̄k) = 1, because the volume of the
x-space is normalised, and we have

∆S ≥ 0.

Ergodicity Breaking
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µτ and let M be a set of initial x values for which the
evolution of the energy over the period of τ is given by
the averaged equation (4) for all τ . Let E0 and E1 be
two sufficiently large values of energy. If the points with
initial conditions E = E0, x ∈ M move to the energy
level E = Ē0 = e

λ
E0 after the period of τ , then the

points with initial conditions E = E1, x ∈ M move to
the level E = Ē1 = e

λ
E1, by the homogeneity of (4).

Now note that the non-averaged system preserves volume
in the (p, q)-space, because the full system is divergence
free. Therefore, it follows that the volume occupied by
the points with x ∈ M between the levels E = E0 and
E = E1 equals to the volume occupied by the points with
x ∈ M̄ between the levels E = Ē0 and E = Ē1, where
M̄ denotes the image of the set M by the flow of the full
system after the period of τ . This gives us

αλ = ln(v(M)/v(M̄)) (5)

where v is the volume in the x-space (at the level H = 1).
Let at least at some value of τ the frozen system be

chaotic in a sufficiently strong sense. Namely, we assume
that the system relaxes to the Liouville measure on each
energy level. This does not fix distribution of energies,
which is denoted by ρ(E). We can, at this value of τ ,
define the entropy of the system as an averaged value of
the ln(V (E)/V (1)) = ln J(E), that is,

S = α

�
�lnE�dx,

where the integral is taken over the x-space (and we as-
sume its volume is scaled to 1), and the average value
of lnE in the integral is with respect the distribution of
energies ρ(E), and is computed at each fixed x. By (5),
the change of the entropy over the period of τ is

∆S =
�

v(Mk) ln

�
v(Mk)

v(M̄k)

�
(6)

where the sum is taken over all sets Mk. (each cor-
responding to each own family of measures µτ ). As�

v(Mk) =
�

v(M̄k) = 1, because the volume of the
x-space is normalised, and we have

∆S ≥ 0.

Ergodicity Breaking
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Homogeneous Hamiltonians (few dof)

Periodic and adiabatically changing parameters

Introduce an entropy (fast chaos)

S = lnΩ
volume bounded by the energy surface



Theory

Homogeneous Hamiltonians (few dof)

Periodic and adiabatically changing parameters

Then

S = lnΩ = α lnE

∆S ≥ 0

“                   ”
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∆S = 0

∆S = θ > 0
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FIG. 4: Projection to energy level H = 1. a) Points in the

phase space (p, q) can by represented in terms of the coor-

dinates (x, E). b) the volume of all ergodic components is

normalised.

µτ and let M be a set of initial x values for which the
evolution of the energy over the period of τ is given by
the averaged equation (4) for all τ . Let E0 and E1 be
two sufficiently large values of energy. If the points with
initial conditions E = E0, x ∈ M move to the energy
level E = Ē0 = e

λ
E0 after the period of τ , then the

points with initial conditions E = E1, x ∈ M move to
the level E = Ē1 = e

λ
E1, by the homogeneity of (4).

Now note that the non-averaged system preserves volume
in the (p, q)-space, because the full system is divergence
free. Therefore, it follows that the volume occupied by
the points with x ∈ M between the levels E = E0 and
E = E1 equals to the volume occupied by the points with
x ∈ M̄ between the levels E = Ē0 and E = Ē1, where
M̄ denotes the image of the set M by the flow of the full
system after the period of τ . This gives us

αλ = ln(v(M)/v(M̄)) (5)

where v is the volume in the x-space (at the level H = 1).
Let at least at some value of τ the frozen system be

chaotic in a sufficiently strong sense. Namely, we assume
that the system relaxes to the Liouville measure on each
energy level. This does not fix distribution of energies,
which is denoted by ρ(E). We can, at this value of τ ,
define the entropy of the system as an averaged value of
the ln(V (E)/V (1)) = ln J(E), that is,

S = α

�
�lnE�dx,

where the integral is taken over the x-space (and we as-
sume its volume is scaled to 1), and the average value
of lnE in the integral is with respect the distribution of
energies ρ(E), and is computed at each fixed x. By (5),
the change of the entropy over the period of τ is

∆S =
�

v(Mk) ln

�
v(Mk)

v(M̄k)

�
(6)

where the sum is taken over all sets Mk. (each cor-
responding to each own family of measures µτ ). As�

v(Mk) =
�

v(M̄k) = 1, because the volume of the
x-space is normalised, and we have

∆S ≥ 0.

2

We start with detailed numerical results in a two pa-
rameter family of homogeneous Hamiltonians with two
degrees of freedom. We show that changing parameters
only in the chaotic regime leads at most to a polyno-
mial energy growth, whereas breaking ergodicity leads to
exponential energy growth. Later on, we proceed with
the general theory for Hamiltonians with homogeneous
potentials.

We focus on the family of quartic homogeneous poten-
tials with two degrees of freedom. Introducing the nota-
tion q = (q1, q2) and p = (p1, p2) and τ(t) = (a(t), b(t)),
we have

H(p, q, τ(t)) =
1

2
p
2
1 +

1

2
p
2
2 +

a(t)

4

�
q
4
1 + q

4
2

�
+

b(t)

2
q
2
1q

2
2 .

We chose this Hamiltonian because it has been thor-
oughly studied [24, 25]. We perform a numerical integra-
tion (in the extended phase space). Because the potential
is homogeneous the dynamical regime does not change as
a function of the energy. To avoid numerical artifacts in
behavior of the energy we rescale the energy to the level
E0 after a full cycle of the parameters (see Methods).

After n periods of τ the energy En/E0 =
Πn−1

k=1Ek/Ek−1 can change exponentially as a function of
n. The exponential growth rate of En/E0 is then quan-
tified by

r(n) =
1

n

n�

k=1

ln ζk.

Hence, we consider the asymptotic growth rate of a sin-
gle orbit rso = limn→∞ r(n), if the limit exists and
is bounded away from zero it captures the exponential
growth rate of a single orbit.

Ergodicity and polynomial energy growth: If for each
frozen value of the parameters the Hamiltonian is
strongly chaotic, we observe only polynomial energy
growth. For instance, for a = 0.01 and b = 1.5 +
cos(2πt/T ), the energy growth is quadratic, see Fig. 1.
The inset of Fig. 1 shows the rate r(n) and indicates
that rso = 0, corroborating the lack to exponential en-
ergy growth.
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FIG. 1: Polynomial energy growth in ergodic regime.
We change parameters along the chaotic regime only, and
show the ensemble energy growth. In the inset we show the
rate rso for these two trajectories, which reach a limit rso = 0
corresponding to no exponential energy growth.

Ergodicity breaking leads to exponential energy growth.
We consider a case in which the parameters go through
chaotic and periodic regions in the parameter space corre-
sponding to the cycle displayed in Fig. 2 a). Performing
multiple cycles we observe an exponential energy growth.
In Figure 2 b) we plot the y−axis in log scale, We

observe two distinct rates first the ensemble rate
and then a crossover to single orbit rate. In Figure
2 c) we show the rates for single orbits for two distinct ini-
tial conditions. The inset of c) corresponds to a zoom for
a smaller number of cycles. The exponential rate reaches
a limit r(n) → rso ≈ 0.023. Since the Hamiltonian has
only a few degrees of freedom, we consider the entropy in
the sense Hertz. That is, the entropy of microcanonical
distribution is described by ln(Ω) where Ω is the volume
bounded by the energy surface, not the volume of the
energy surface. Consider the entropy Sn = lnEn, and
the change in entropy ∆Sn = Sn+1−Sn. Our model Eq.
(1) for energies provides a random walk model for the
entropy changes ∆Sn = ln ζn, which leads to a geometric
Brownian motion for the energies. In particular the dis-
tribution of the lnEn tends to a Gaussian for large times,
as seen in Figure 4 c) and d).
General Setting: A Hamiltonian H(q, p) is homoge-

neous if for any E > 0 there exists a coordinate transfor-
mation that keeps the system the same, sends the energy
level H = 1 to H = E, and has a constant Jacobian
J(E) = E

α, α > 0. We will assume that the positive
energy levels are compact, so J(E) = V (E)/V (1) where
V (E) is the volume of the (q, p)-space between the en-
ergy levels H = E and H = 0. Thus, we can label the
points in the phase space (p, q) by the coordinates (x,E)
where E is the energy and x is a projection to the energy
level H = 1, see Fig. 4.
Now we consider the family of adiabatically changing

homogeneous Hamiltonians H(p, q, τ). Then, a theorem
by Anosov is applied. Namely, if the frozen system is er-
godic on every energy level with respect to the Liouville
measure µ = δ(E − H(p, q, τ))dpdq. We are guaranteed
that averaging over this measure gives a good approxi-
mation of the slow evolution of the energy for a large set
of initial conditions:

Ė =

�
∂H

∂τ
(p, q, τ)δ(E −H(p, q, τ))dpdq
�

δ(E −H(p, q, τ))dpdq
τ̇ . (3)

By analogy, in the case when the frozen system is not
ergodic we may assume that the slow evolution of the
energy is given by an averaged equation

Ė =

�
∂H

∂τ
δ(E −H)µτ (dx) τ̇ (4)

where µτ is a certain ergodic measure on the space of fast
variables. This measure can depend on τ and be differ-
ent for different initial conditions. Choose some family
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Dynamics of energies is slow
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Fermi acceleration is the process of energy

transfer from massive objects in slow motion to

light objects that move fast [1]. The model for

such process is a time-dependent Hamiltonian

system. As the parameters of the system change

with time, the energy is no longer conserved,

which makes the acceleration possible. The ac-

celeration has been extensively studied for the

billiards with oscillating boundaries. The bulk of

numerical studies shows that the possible energy

growth is polynomial in time. [15, 16, 18, 19].

This regime of energy growth can be easily de-

stroyed by an arbitrarily small dissipation [7].

The main obstruction for fast energy growth is

the ergodicity of the particle motion [9]. Re-

cently, an example of a breathing billiard with a

robust exponential energy growth due to a break-

up of ergodicity was proposed [10]. Here we show

that the effect has a fundamental nature, going far

beyond the billiard dynamics: the non-ergodicity

of any chaotic Hamiltonian system must univer-

sally lead to the exponential growth of energy at

a slow periodic variation of parameters.

Fermi proposed an energy transfer mechanism from

massive objects to light objects to explain the abnormal

high energy of cosmic rays. Particles performing fast

motion would gain energy from the interaction with slow

moving massive objectives and thereby increase their en-

ergy [1]. This phenomenon is now called Fermi accelera-

tion. Despite of intensive research on this energy transfer

mechanism it remains unclear how effective is the energy
transfer.

Most efforts to understand this mechanism have fo-

cused on the energy growth of particles in billiards with

a periodically oscillating boundary [9]. A comprehensive

theory of this phenomenon, proposed in [9], predicts the

growth of kinetic energy which is at most polynomially in

time, in agreement with numerical studies [13–16]. For

the billiard with slowly moving boundaries, the energy

can grow at most polynomially in time because the er-

godicity of the particle dynamics in the static billiard

leads to the existence of an Anosov-Kasuga adiabatic in-

variant [9, 10, 12, 20–22]. The polynomial energy growth

can make the Fermi acceleration makes it a fragile phe-

nomenon because an arbitrarily weak linear dissipation

stops the acceleration [7]. Recently, examples of robust

exponential energy growth were obtained once the ergod-

icity of the frozen billiard was broken [9, 10].

Here, we demonstrate that the non-ergodicity of a

chaotic Hamiltonian system with few degrees of freedom

must universally lead to the exponential growth of energy

at a slow (adiabatic) periodic variation of parameters of

the system. We argue that the key mechanism is the

following: Typical adiabatic changes in parameters leads

the frozen Hamiltonian to exhibit integrable and strongly

chaotic dynamics. We introduce a notion of entropy and

show that the changes in the number of ergodic compo-

nents leads to a linear increase of entropy, which in turns

yields an exponential energy growth. For an ensemble of

initial conditions uniformly distributed in a sufficiently

high level of energy, we show that the long-term evolution

of the energy can be modelled by a geometric Brownian

motion with a positive growth rate, the same for almost

every initial condition.

We consider a family of homogeneous Hamiltonians

H(p, q, τ) and assume that the parameter τ changes pe-

riodically with time with period T . The energy E =

H(p, q, τ) will be no longer preserved by the system:

Ė = (∂H/∂τ)τ̇ . We assume an adiabatic change of pa-

rameters. That is, τ and lnE are much slower than

the dynamics in the phase space. We also assume that

∂H/∂τ has the same order as H, so the speed of change

of lnE will be comparable with τ̇ . Lets start the Hamil-

tonian with energy E0 = H(p, q, τ(0)) and denote by

En = H(p, q, τ(nT )) the energy after n periods. Now

assume that during one period of parameters τ the dy-

namics spends enough time in a regime of strong chaos.

Our first claim is that at high energies we have

En+1 = Enζn, (1)

where ζn is an independent random variable. Later on

we give a mathematical formulation of this energy model.

For now, the reasoning for this model is that changes in

energy after a cycle must be proportional to the energy

because the Hamiltonian is homogeneous and ∂H/∂τ is of

order H. Moreover, ζn must be an independent random

variable because of the strong chaos in the system for

certain frozen values of the parameters.

Our main claim is that typically adiabatic changes in

parameters lead

E ln ζi > 0, (2)

along a typical change of parameters the frozen dynamics

is phase space splits into distinct ergodic components (for

the frozen system). This positive bias in Eq. (2) leads

to exponential energy growth for a large set of initial

points. Combining Eq. (1) and (2), we obtain a geomet-

ric random walk for the energy increase. If the dynamics

in the cycle is ergodic adiabatic invariance shows that

E ln ζi = 0, and there is entropy growth.
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(along the connecting arc). The insets show the dynamics of the frozen Hamiltonian. Performing the cycle leads to exponential
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FIG. 3: Distribution of Energies is log-normal. We show

the distribution of energies for an ensemble of 2×10
4
particles

starting randomly distributed in the energy shell E0. After a

number of cycles the logarithm of the energies are distributed

according to a Gaussian.
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FIG. 4: Projection to energy level H = 1. a) Points in the

phase space (p, q) can by represented in terms of the coor-

dinates (x, E). b) the volume of all ergodic components is

normalised.

µτ and let M be a set of initial x values for which the
evolution of the energy over the period of τ is given by
the averaged equation (4) for all τ . Let E0 and E1 be
two sufficiently large values of energy. If the points with
initial conditions E = E0, x ∈ M move to the energy
level E = Ē0 = e

λ
E0 after the period of τ , then the

points with initial conditions E = E1, x ∈ M move to
the level E = Ē1 = e

λ
E1, by the homogeneity of (4).

Now note that the non-averaged system preserves volume
in the (p, q)-space, because the full system is divergence
free. Therefore, it follows that the volume occupied by
the points with x ∈ M between the levels E = E0 and
E = E1 equals to the volume occupied by the points with
x ∈ M̄ between the levels E = Ē0 and E = Ē1, where
M̄ denotes the image of the set M by the flow of the full
system after the period of τ . This gives us

αλ = ln(v(M)/v(M̄)) (5)

where v is the volume in the x-space (at the level H = 1).
Let at least at some value of τ the frozen system be

chaotic in a sufficiently strong sense. Namely, we assume
that the system relaxes to the Liouville measure on each
energy level. This does not fix distribution of energies,
which is denoted by ρ(E). We can, at this value of τ ,
define the entropy of the system as an averaged value of
the ln(V (E)/V (1)) = ln J(E), that is,

S = α

�
�lnE�dx,

where the integral is taken over the x-space (and we as-
sume its volume is scaled to 1), and the average value
of lnE in the integral is with respect the distribution of
energies ρ(E), and is computed at each fixed x. By (5),
the change of the entropy over the period of τ is

∆S =
�

v(Mk) ln

�
v(Mk)

v(M̄k)

�
(6)

where the sum is taken over all sets Mk. (each cor-
responding to each own family of measures µτ ). As�

v(Mk) =
�

v(M̄k) = 1, because the volume of the
x-space is normalised, and we have

∆S ≥ 0.
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FIG. 4: Projection to energy level H = 1. a) Points in the

phase space (p, q) can by represented in terms of the coor-

dinates (x, E). b) the volume of all ergodic components is

normalised.

µτ and let M be a set of initial x values for which the
evolution of the energy over the period of τ is given by
the averaged equation (4) for all τ . Let E0 and E1 be
two sufficiently large values of energy. If the points with
initial conditions E = E0, x ∈ M move to the energy
level E = Ē0 = e

λ
E0 after the period of τ , then the

points with initial conditions E = E1, x ∈ M move to
the level E = Ē1 = e

λ
E1, by the homogeneity of (4).

Now note that the non-averaged system preserves volume
in the (p, q)-space, because the full system is divergence
free. Therefore, it follows that the volume occupied by
the points with x ∈ M between the levels E = E0 and
E = E1 equals to the volume occupied by the points with
x ∈ M̄ between the levels E = Ē0 and E = Ē1, where
M̄ denotes the image of the set M by the flow of the full
system after the period of τ . This gives us

αλ = ln(v(M)/v(M̄)) (5)

where v is the volume in the x-space (at the level H = 1).
Let at least at some value of τ the frozen system be

chaotic in a sufficiently strong sense. Namely, we assume
that the system relaxes to the Liouville measure on each
energy level. This does not fix distribution of energies,
which is denoted by ρ(E). We can, at this value of τ ,
define the entropy of the system as an averaged value of
the ln(V (E)/V (1)) = ln J(E), that is,

S = α

�
�lnE�dx,

where the integral is taken over the x-space (and we as-
sume its volume is scaled to 1), and the average value
of lnE in the integral is with respect the distribution of
energies ρ(E), and is computed at each fixed x. By (5),
the change of the entropy over the period of τ is

∆S =
�

v(Mk) ln

�
v(Mk)

v(M̄k)

�
(6)

where the sum is taken over all sets Mk. (each cor-
responding to each own family of measures µτ ). As�

v(Mk) =
�

v(M̄k) = 1, because the volume of the
x-space is normalised, and we have

∆S ≥ 0.

Dynamics of Energies

Starting

After one period
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growth of energy. In b) we show the ensemble energy growth with the y−axis in log scale. In c) the exponential rate for two
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0.01 0.1 1

m2

0.01

0.1

1

r s
o

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

 

 

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

2

2.5

 

 

b) c)

0.4−0.4 0
0

1

2

−1 0 1 2
0

0.4

0.8

−2

ρ[
ln
(E

n
/E

0
)]

ln(E1/E0)] ln(E9/E0)]

a)

FIG. 3: Distribution of Energies is log-normal. We show

the distribution of energies for an ensemble of 2×10
4
particles

starting randomly distributed in the energy shell E0. After a

number of cycles the logarithm of the energies are distributed

according to a Gaussian.

(p,q)

xx H = 1

H = E

Φ
H = 1

M1 M2

v(M1) + v(M2) = 1

a) b)
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µτ and let M be a set of initial x values for which the
evolution of the energy over the period of τ is given by
the averaged equation (4) for all τ . Let E0 and E1 be
two sufficiently large values of energy. If the points with
initial conditions E = E0, x ∈ M move to the energy
level E = Ē0 = e

λ
E0 after the period of τ , then the

points with initial conditions E = E1, x ∈ M move to
the level E = Ē1 = e

λ
E1, by the homogeneity of (4).

Now note that the non-averaged system preserves volume
in the (p, q)-space, because the full system is divergence
free. Therefore, it follows that the volume occupied by
the points with x ∈ M between the levels E = E0 and
E = E1 equals to the volume occupied by the points with
x ∈ M̄ between the levels E = Ē0 and E = Ē1, where
M̄ denotes the image of the set M by the flow of the full
system after the period of τ . This gives us

αλ = ln(v(M)/v(M̄)) (5)

where v is the volume in the x-space (at the level H = 1).
Let at least at some value of τ the frozen system be

chaotic in a sufficiently strong sense. Namely, we assume
that the system relaxes to the Liouville measure on each
energy level. This does not fix distribution of energies,
which is denoted by ρ(E). We can, at this value of τ ,
define the entropy of the system as an averaged value of
the ln(V (E)/V (1)) = ln J(E), that is,

S = α

�
�lnE�dx,

where the integral is taken over the x-space (and we as-
sume its volume is scaled to 1), and the average value
of lnE in the integral is with respect the distribution of
energies ρ(E), and is computed at each fixed x. By (5),
the change of the entropy over the period of τ is

∆S =
�

v(Mk) ln

�
v(Mk)

v(M̄k)

�
(6)

where the sum is taken over all sets Mk. (each cor-
responding to each own family of measures µτ ). As�

v(Mk) =
�

v(M̄k) = 1, because the volume of the
x-space is normalised, and we have

∆S ≥ 0.
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µτ and let M be a set of initial x values for which the
evolution of the energy over the period of τ is given by
the averaged equation (4) for all τ . Let E0 and E1 be
two sufficiently large values of energy. If the points with
initial conditions E = E0, x ∈ M move to the energy
level E = Ē0 = e

λ
E0 after the period of τ , then the

points with initial conditions E = E1, x ∈ M move to
the level E = Ē1 = e

λ
E1, by the homogeneity of (4).

Now note that the non-averaged system preserves volume
in the (p, q)-space, because the full system is divergence
free. Therefore, it follows that the volume occupied by
the points with x ∈ M between the levels E = E0 and
E = E1 equals to the volume occupied by the points with
x ∈ M̄ between the levels E = Ē0 and E = Ē1, where
M̄ denotes the image of the set M by the flow of the full
system after the period of τ . This gives us

αλ = ln(v(M)/v(M̄)) (5)

where v is the volume in the x-space (at the level H = 1).
Let at least at some value of τ the frozen system be

chaotic in a sufficiently strong sense. Namely, we assume
that the system relaxes to the Liouville measure on each
energy level. This does not fix distribution of energies,
which is denoted by ρ(E). We can, at this value of τ ,
define the entropy of the system as an averaged value of
the ln(V (E)/V (1)) = ln J(E), that is,

S = α

�
�lnE�dx,

where the integral is taken over the x-space (and we as-
sume its volume is scaled to 1), and the average value
of lnE in the integral is with respect the distribution of
energies ρ(E), and is computed at each fixed x. By (5),
the change of the entropy over the period of τ is

∆S =
�

v(Mk) ln

�
v(Mk)

v(M̄k)

�
(6)

where the sum is taken over all sets Mk. (each cor-
responding to each own family of measures µτ ). As�

v(Mk) =
�

v(M̄k) = 1, because the volume of the
x-space is normalised, and we have

∆S ≥ 0.

Dynamics of Energies

Likewise

move to
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µτ and let M be a set of initial x values for which the
evolution of the energy over the period of τ is given by
the averaged equation (4) for all τ . Let E0 and E1 be
two sufficiently large values of energy. If the points with
initial conditions E = E0, x ∈ M move to the energy
level E = Ē0 = e

λ
E0 after the period of τ , then the

points with initial conditions E = E1, x ∈ M move to
the level E = Ē1 = e

λ
E1, by the homogeneity of (4).

Now note that the non-averaged system preserves volume
in the (p, q)-space, because the full system is divergence
free. Therefore, it follows that the volume occupied by
the points with x ∈ M between the levels E = E0 and
E = E1 equals to the volume occupied by the points with
x ∈ M̄ between the levels E = Ē0 and E = Ē1, where
M̄ denotes the image of the set M by the flow of the full
system after the period of τ . This gives us

αλ = ln(v(M)/v(M̄)) (5)

where v is the volume in the x-space (at the level H = 1).
Let at least at some value of τ the frozen system be

chaotic in a sufficiently strong sense. Namely, we assume
that the system relaxes to the Liouville measure on each
energy level. This does not fix distribution of energies,
which is denoted by ρ(E). We can, at this value of τ ,
define the entropy of the system as an averaged value of
the ln(V (E)/V (1)) = ln J(E), that is,

S = α

�
�lnE�dx,

where the integral is taken over the x-space (and we as-
sume its volume is scaled to 1), and the average value
of lnE in the integral is with respect the distribution of
energies ρ(E), and is computed at each fixed x. By (5),
the change of the entropy over the period of τ is

∆S =
�

v(Mk) ln

�
v(Mk)

v(M̄k)

�
(6)

where the sum is taken over all sets Mk. (each cor-
responding to each own family of measures µτ ). As�

v(Mk) =
�

v(M̄k) = 1, because the volume of the
x-space is normalised, and we have

∆S ≥ 0.

Dynamics of Energies

The full system preserves the volume (Divergent free) 

image of the set M by the flow of the full 
system after the period
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We start with detailed numerical results in a two pa-
rameter family of homogeneous Hamiltonians with two
degrees of freedom. We show that changing parameters
only in the chaotic regime leads at most to a polyno-
mial energy growth, whereas breaking ergodicity leads to
exponential energy growth. Later on, we proceed with
the general theory for Hamiltonians with homogeneous
potentials.

We focus on the family of quartic homogeneous poten-
tials with two degrees of freedom. Introducing the nota-
tion q = (q1, q2) and p = (p1, p2) and τ(t) = (a(t), b(t)),
we have

H(p, q, τ(t)) =
1

2
p
2
1 +

1

2
p
2
2 +

a(t)

4

�
q
4
1 + q

4
2

�
+

b(t)

2
q
2
1q

2
2 .

We chose this Hamiltonian because it has been thor-
oughly studied [24, 25]. We perform a numerical integra-
tion (in the extended phase space). Because the potential
is homogeneous the dynamical regime does not change as
a function of the energy. To avoid numerical artifacts in
behavior of the energy we rescale the energy to the level
E0 after a full cycle of the parameters (see Methods).

After n periods of τ the energy En/E0 =
Πn−1

k=1Ek/Ek−1 can change exponentially as a function of
n. The exponential growth rate of En/E0 is then quan-
tified by

r(n) =
1

n

n�

k=1

ln ζk.

Hence, we consider the asymptotic growth rate of a sin-
gle orbit rso = limn→∞ r(n), if the limit exists and
is bounded away from zero it captures the exponential
growth rate of a single orbit.

Ergodicity and polynomial energy growth: If for each
frozen value of the parameters the Hamiltonian is
strongly chaotic, we observe only polynomial energy
growth. For instance, for a = 0.01 and b = 1.5 +
cos(2πt/T ), the energy growth is quadratic, see Fig. 1.
The inset of Fig. 1 shows the rate r(n) and indicates
that rso = 0, corroborating the lack to exponential en-
ergy growth.
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FIG. 1: Polynomial energy growth in ergodic regime.
We change parameters along the chaotic regime only, and
show the ensemble energy growth. In the inset we show the
rate rso for these two trajectories, which reach a limit rso = 0
corresponding to no exponential energy growth.

Ergodicity breaking leads to exponential energy growth.
We consider a case in which the parameters go through
chaotic and periodic regions in the parameter space corre-
sponding to the cycle displayed in Fig. 2 a). Performing
multiple cycles we observe an exponential energy growth.
In Figure 2 b) we plot the y−axis in log scale, We

observe two distinct rates first the ensemble rate
and then a crossover to single orbit rate. In Figure
2 c) we show the rates for single orbits for two distinct ini-
tial conditions. The inset of c) corresponds to a zoom for
a smaller number of cycles. The exponential rate reaches
a limit r(n) → rso ≈ 0.023. Since the Hamiltonian has
only a few degrees of freedom, we consider the entropy in
the sense Hertz. That is, the entropy of microcanonical
distribution is described by ln(Ω) where Ω is the volume
bounded by the energy surface, not the volume of the
energy surface. Consider the entropy Sn = lnEn, and
the change in entropy ∆Sn = Sn+1−Sn. Our model Eq.
(1) for energies provides a random walk model for the
entropy changes ∆Sn = ln ζn, which leads to a geometric
Brownian motion for the energies. In particular the dis-
tribution of the lnEn tends to a Gaussian for large times,
as seen in Figure 4 c) and d).
General Setting: A Hamiltonian H(q, p) is homoge-

neous if for any E > 0 there exists a coordinate transfor-
mation that keeps the system the same, sends the energy
level H = 1 to H = E, and has a constant Jacobian
J(E) = E

α, α > 0. We will assume that the positive
energy levels are compact, so J(E) = V (E)/V (1) where
V (E) is the volume of the (q, p)-space between the en-
ergy levels H = E and H = 0. Thus, we can label the
points in the phase space (p, q) by the coordinates (x,E)
where E is the energy and x is a projection to the energy
level H = 1, see Fig. 4.
Now we consider the family of adiabatically changing

homogeneous Hamiltonians H(p, q, τ). Then, a theorem
by Anosov is applied. Namely, if the frozen system is er-
godic on every energy level with respect to the Liouville
measure µ = δ(E − H(p, q, τ))dpdq. We are guaranteed
that averaging over this measure gives a good approxi-
mation of the slow evolution of the energy for a large set
of initial conditions:

Ė =

�
∂H

∂τ
(p, q, τ)δ(E −H(p, q, τ))dpdq
�

δ(E −H(p, q, τ))dpdq
τ̇ . (3)

By analogy, in the case when the frozen system is not
ergodic we may assume that the slow evolution of the
energy is given by an averaged equation

Ė =

�
∂H

∂τ
δ(E −H)µτ (dx) τ̇ (4)

where µτ is a certain ergodic measure on the space of fast
variables. This measure can depend on τ and be differ-
ent for different initial conditions. Choose some family

Averaging Protocols
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FIG. 4: Projection to energy level H = 1. a) Points in the

phase space (p, q) can by represented in terms of the coor-

dinates (x, E). b) the volume of all ergodic components is

normalised.

µτ and let M be a set of initial x values for which the
evolution of the energy over the period of τ is given by
the averaged equation (4) for all τ . Let E0 and E1 be
two sufficiently large values of energy. If the points with
initial conditions E = E0, x ∈ M move to the energy
level E = Ē0 = e

λ
E0 after the period of τ , then the

points with initial conditions E = E1, x ∈ M move to
the level E = Ē1 = e

λ
E1, by the homogeneity of (4).

Now note that the non-averaged system preserves volume
in the (p, q)-space, because the full system is divergence
free. Therefore, it follows that the volume occupied by
the points with x ∈ M between the levels E = E0 and
E = E1 equals to the volume occupied by the points with
x ∈ M̄ between the levels E = Ē0 and E = Ē1, where
M̄ denotes the image of the set M by the flow of the full
system after the period of τ . This gives us

αλ = ln(v(M)/v(M̄)) (5)

where v is the volume in the x-space (at the level H = 1).
Let at least at some value of τ the frozen system be

chaotic in a sufficiently strong sense. Namely, we assume
that the system relaxes to the Liouville measure on each
energy level. This does not fix distribution of energies,
which is denoted by ρ(E). We can, at this value of τ ,
define the entropy of the system as an averaged value of
the ln(V (E)/V (1)) = ln J(E), that is,

S = α

�
�lnE�dx,

where the integral is taken over the x-space (and we as-
sume its volume is scaled to 1), and the average value
of lnE in the integral is with respect the distribution of
energies ρ(E), and is computed at each fixed x. By (5),
the change of the entropy over the period of τ is

∆S =
�

v(Mk) ln

�
v(Mk)

v(M̄k)

�
(6)

where the sum is taken over all sets Mk. (each cor-
responding to each own family of measures µτ ). As�

v(Mk) =
�

v(M̄k) = 1, because the volume of the
x-space is normalised, and we have

∆S ≥ 0.

Entropy Formula

At a moment of strong chaos (relaxation to Liouville) 
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µτ and let M be a set of initial x values for which the
evolution of the energy over the period of τ is given by
the averaged equation (4) for all τ . Let E0 and E1 be
two sufficiently large values of energy. If the points with
initial conditions E = E0, x ∈ M move to the energy
level E = Ē0 = e

λ
E0 after the period of τ , then the

points with initial conditions E = E1, x ∈ M move to
the level E = Ē1 = e

λ
E1, by the homogeneity of (4).

Now note that the non-averaged system preserves volume
in the (p, q)-space, because the full system is divergence
free. Therefore, it follows that the volume occupied by
the points with x ∈ M between the levels E = E0 and
E = E1 equals to the volume occupied by the points with
x ∈ M̄ between the levels E = Ē0 and E = Ē1, where
M̄ denotes the image of the set M by the flow of the full
system after the period of τ . This gives us

αλ = ln(v(M)/v(M̄)) (5)

where v is the volume in the x-space (at the level H = 1).
Let at least at some value of τ the frozen system be

chaotic in a sufficiently strong sense. Namely, we assume
that the system relaxes to the Liouville measure on each
energy level. This does not fix distribution of energies,
which is denoted by ρ(E). We can, at this value of τ ,
define the entropy of the system as an averaged value of
the ln(V (E)/V (1)) = ln J(E), that is,

S = α

�
�lnE�dx,

where the integral is taken over the x-space (and we as-
sume its volume is scaled to 1), and the average value
of lnE in the integral is with respect the distribution of
energies ρ(E), and is computed at each fixed x. By (5),
the change of the entropy over the period of τ is

∆S =
�

v(Mk) ln

�
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�
(6)

where the sum is taken over all sets Mk. (each cor-
responding to each own family of measures µτ ). As�

v(Mk) =
�

v(M̄k) = 1, because the volume of the
x-space is normalised, and we have

∆S ≥ 0.

Changes in Entropy
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To see this, denote v(Mk) = vk, v(M̄k) = ρkvk; we have�
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vk = 1 implying
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��
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�
≥ − ln

��
ρkvk

�
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Thus, the entropy (evaluated at the beginning of each

period) is a non-decreasing function of time. Note that

in the case the frozen system is ergodic for each τ , the
Anosov averaging Eq. (3) gives

∆S = 0,

because V̇ (E, τ) = 0, see supplementary material. This

means that energy changes periodically with τ (to keep

V (E, τ) constant), hence entropy also does not change

over the period.

In the general case we do not assume the ergodicity for

all τ , so there is no restrictions on the growth of entropy,

and we should expect

∆S > 0

in (6). As there is no dependence on energy in the right-

hand side of (6), we will get the same increment in en-

tropy over each period of θ, so S will grow linearly in

time. This corresponds to an exponential growth of en-

ergy, with a rate ∆S/α for a typical initial condition.

We can view our system as a gas of non-interacting

particles (different particles correspond to different ini-

tial conditions). As there is no interaction, there is no

equilibrium distribution in energies. However, in the er-

godic case we still recover the entropy conservation at the

adiabatic (i.e. slow) change of parameters. In the non-

ergodic case we can think of particles as being, at each

value of the parameter τ , in different states which cor-

respond to different ergodic measures µτ over which the

averaging is performed. Thus, our gas can be considered

as a mixture of different phases or fractions; the adiabatic
change of parameter can lead to particles changing their

sates, so the relative densities of each fraction in the gas

can vary, and this naturally leads to the entropy growth.

Methods:
Numerical Integration: We perform our numeri-

cal integration using an explicit fourth-order sympletic

method [11]. We fix the integration step h = 10
−4

, and

choose the initial conditions randomly at the energy level

E0 = 3×10
5
. We pick initial conditions randomly at the

energy level E0. Whenever, we consider an ensemble of

particles, we fix the particle number as N = 2× 10
4
.

Energy Rescaling For a fixed initial condition, after

a full period consider ξ = E1/E0, then we rescale the

variables according to x̃ = x/ξ4 and p̃x = px/ξ2 likewise

for y and py. Moreover, we scale time as t̃ = t/ξ4. This
change of coordinate keeps the equations of motion un-

changed. Then recursively we define new variables after

each cycle.
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Changes in Entropy

Volumes

Normalization



Summing Up

Ergodicity (Anosov-Kasuga) 

∆S = 0

∆S = θ > 0

Generically

Exponential energy growth



Conclusion

Universal character (pumping at high order)

Hamiltonians with few dof  are non-ergodic

Typical parameters changes leads to exp growth



Conclusion

Polynomial Potentials will “become” 
homogeneous at high energies


