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Introduction

Parameterization of reduced models

It is not unusual for scientists to be interested in “derived” quantities
rather than in the “natural” variables of a model.

Examples:

Active fraction of an enzyme =
[Eactive]∑

i Ei

Energy charge =
[ATP] + 1

2 [ADP]

[ATP] + [ADP] + [AMP]

The goal of model reduction is to obtain a model expressed in terms
of a few variables.

But which variables?

Can we kill two birds with one stone?
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Linear lumping

Motivational example: linear metabolic pathway

Si−1
vi+−−⇀↽−−
vi−

Si , i = 1, 2, . . . ,N

Reversible Michaelis-Menten kinetics (rescaled):

vi+ =
γi si−1

1 + si−1/αi + si/βi

vi− =
ηi si

1 + si−1/αi + si/βi

N∑
i=0

si = 1

Ref: Roussel and Fraser, Chaos 11, 196 (2001).
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Linear lumping

Slow invariant manifolds
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Linear lumping

Parameterization of invariant manifolds

A d-dimensional differentiable manifold can be parameterized (at
least locally) by a set of d coordinates zi such that

s = s(z)

In standard approaches to the computation of slow invariant
manifolds, z is a subset of the s variables.

Instead, take
z = ζ(s)

where ζ is a known function of s.

Special case: In linear aggregation or lumping,

ζ(s) = Ls

where L is a constant matrix.
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Linear lumping

Evolution equation for z

Given z = ζ(s), differentiation with respect to time gives

ż = ζsṡ

where

ζs(ij) =
∂ζi
∂sj

If we have computed the manifold in this parameterization, viz.
s = s(z), then we have the evolution equation for the reduced model

ż = ζsṡ|s=s(z)
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Linear lumping

Invariance equation

For a manifold parameterized by s = s(z), differentiation with respect
to time gives

ṡ = szż

where

sz(ij) =
∂si
∂zj

are a priori unknown partial derivatives of the manifold.

Combining this equation with the evolution equation, we get

ṡ = szζsṡ

or

(I− szζs) ṡ = 0

This is the invariance equation.
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Linear lumping

Nature of the problem

We have the invariance equation, which has N components:

(I− szζs) ṡ = 0 (I)

We also have the d-component constitutive equation

z = ζ(s) (C )

We are only interested in solutions of (I) that are consistent with (C).

We need to solve (C) along with N − d components of (I) for the N
unknown functions si (z).
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Linear lumping

Iterative solution

1 Start with some physically reasonable ansatz for s(z), say s(0)(z),
e.g. a partial equilibrium approximation; set k = 0.

2 Calculate the partial derivatives s
(k)
z .

3 Solve each of the N − d components of
(
I− s

(k)
z ζs

)
ṡ = 0 in turn for

s
(k+1)
i subject to (C) for fixed s

(k)
z . (Chained iteration)

Both ζs and ṡ may depend on s.

4 If the calculation has not converged, set k ← k + 1 and go back to
step 2.
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Linear lumping

One-dimensional slow manifold: convergence
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Linear lumping

Two-dimensional slow manifold: convergence

 0
 0.2

 0.4
 0.6

 0.8
 1  0  0.2  0.4  0.6  0.8  1

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

s3

Quasi-equilibrium approx.
Converged manifold

z1

z2

s3

ζ(s) =

[
s0 + s1

s2

]

Converged after ∼ 6 iterates

Marc R. Roussel Lumping and Invariant Manifolds September 3, 2014 11 / 18



Linear lumping

Converged results
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Nonlinear lumping

A small hydrogen combustion model

H2

k+
1−−⇀↽−−
k−
1

2H O2

k+
2−−⇀↽−−
k−
2

2O

H2O
k+
3−−⇀↽−−
k−
3

H + OH H2 + O
k+
4−−⇀↽−−
k−
4

H + OH

O2 + H
k+
5−−⇀↽−−
k−
5

O + OH H2 + O
k+
6−−⇀↽−−
k−
6

H2O

Conservation relations:
mH = 2[H2] + 2[H2O] + [H] + [OH]
mO = 2[O2] + [H2O] + [O] + [OH]

Four independent concentrations

Ref.: Gorban, Karlin and Zinovyev, Physica A 333, 106 (2004).
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Nonlinear lumping

A physically motivated nonlinear lumping function

Take the “partial” Lyapunov function

G ′ =
∑

stable species

si

[
ln

(
si
s∗i

)
− 1

]

The computation of the one-dimensional slow manifold is similar to
that described above, with two wrinkles:

The functional equation and lumping relation are solved as a system
rather than using chained iteration.
It is necessary to stabilize the calculation.
(This is sometimes also the case with the linear pathway model.)
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Nonlinear lumping

A simple stabilization method

The functional equation implicitly defines a relation

s = F(Sz)

Add ws to both sides, where w is an arbitrary weight, and rearrange:

s =
F(Sz) + ws

1 + w

We can solve this by iteration:

si+1 =
F(Sz,i ) + wsi

1 + w

Using w > 0 slows convergence, but increases stability.
Roussel, J. Math. Chem. 21, 385 (1997); Davis and Skodje, J. Chem.
Phys. 111, 859 (1999).
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Nonlinear lumping

Results hot off the presses!
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Conclusion

Future perspectives

Ongoing work:

Reduction of chemical master equation

Potential future avenues of investigation:

Study stability of alternative computational sequences for solving the
functional equation
Exploit modularity of biochemical networks
Nonlinear transformations
Exact slow time scale coarse graining of spatial models
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Conclusion
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