Partial synchronization in networks of systems with linear time-delay coupling

Erik Steur

KU Leuven, Faculty of Psychology and Educational Sciences
Research Group Experimental Psychology
Laboratory for Perceptual Dynamics

Network synchronization

Partial synchronization

acheratarat \rightarrow 隹

KU LIEUVEN

Outline

Problem setting

Partial synchronization manifolds

Stability of partial synchronization manifolds

Example

Concluding remarks

Networks

Weighted directed graph $\mathcal{G}=(\mathcal{V}, \mathcal{E}, A)$

- finite node set $\mathcal{V}=\{1, \ldots, k\}$
- edge set $\mathcal{E} \subset \mathcal{V} \times \mathcal{V} ;(i, j) \in \mathcal{E}$ denotes an edge from j to i
- weighted adjacency matrix $A \in \mathbb{R}^{k \times k}$

$$
\begin{aligned}
\mathcal{V} & =\{1,2,3,4\} \\
\mathcal{E} & =\{(1,4),(2,1),(3,4),(4,2),(4,3)\} \\
A & =\left(\begin{array}{llll}
0 & 0 & 0 & a \\
b & 0 & 0 & 0 \\
0 & 0 & 0 & c \\
0 & d & e & 0
\end{array}\right)
\end{aligned}
$$

Networks

Weighted directed graph $\mathcal{G}=(\mathcal{V}, \mathcal{E}, A)$

- \mathcal{G} is assumed to be simple, i.e. $(i, i) \notin \mathcal{E}$ for all $i \in \mathcal{V}$, and strongly connected
- neighborsets $\mathcal{N}_{i}=\{j \in \mathcal{V} \mid(i, j) \in \mathcal{E}\}, i \in \mathcal{V}$
- weighted in-degree matrix $D \in \mathbb{R}^{k \times k}$

$$
\begin{aligned}
& \mathcal{N}_{1}=\{4\} \quad \mathcal{N}_{2}=\{1\} \\
& \mathcal{N}_{3}=\{4\} \\
& \mathcal{N}_{4}=\{2,3\} \\
& D=\left(\begin{array}{llll}
a & & \\
& b & & \\
& & c & \\
& & & d+e
\end{array}\right)
\end{aligned}
$$

Node dynamics and coupling functions

Each node $i \in \mathcal{V}$ is assigned the dynamics

$$
\left\{\begin{array}{l}
\dot{x}_{i}(t)=f\left(x_{i}(t)\right)+B u_{i}(t) \\
y_{i}(t)=C x_{i}(t)
\end{array}\right.
$$

with

- state $x_{i}(t) \in \mathbb{R}^{n}$
- input(s) $u_{i}(t) \in \mathbb{R}^{m}, 1 \leq m \leq n$
- output(s) $y_{i}(t) \in \mathbb{R}^{m}$
- locally Lipschitz continuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- matrices $B, C^{\top} \in \mathbb{R}^{n \times m}$ with

$$
\operatorname{rank}(B C)=\operatorname{rank}(C B)=m
$$

Node dynamics and coupling functions

Each node $i \in \mathcal{V}$ is assigned the dynamics

$$
\left\{\begin{array}{l}
\dot{x}_{i}(t)=f\left(x_{i}(t)\right)+B u_{i}(t) \\
y_{i}(t)=C x_{i}(t)
\end{array}\right.
$$

The interaction between the systems is given by the linear time-delay coupling law

$$
u_{i}(t)=\sigma \sum_{j \in \mathcal{N}_{i}} a_{i j}\left[y_{j}(t-\tau)-y_{i}(t)\right]
$$

with

- $a_{i j}$ the entries of the weighted adjacency matrix A
- constant time-delay $\tau>0$
- constant coupling strength $\sigma>0$

Partial Synchronization

Given

- a network $\mathcal{G}=(\mathcal{V}, \mathcal{E}, A)$
- dynamical systems

$$
\left\{\begin{array}{l}
\dot{x}_{i}(t)=f\left(x_{i}(t)\right)+B u_{i}(t) \\
y_{i}(t)=C x_{i}(t)
\end{array}\right.
$$

- coupling $u_{i}(t)=\sigma \sum_{j \in \mathcal{N}_{i}} a_{i j}\left[y_{j}(t-\tau)-y_{i}(t)\right]$

Partial synchronization $=$ the asymptotic match of the state of some, but not all, systems

$$
x_{i}\left(t ; t_{0}, \phi\right) \xrightarrow{t \rightarrow \infty} x_{j}\left(t ; t_{0}, \phi\right) \text { for some } i, j \in \mathcal{V}
$$

Outline

Problem setting

Partial synchronization manifolds

Stability of partial synchronization manifolds

Example

Concluding remarks

Partial synchronization manifolds

A set

$$
\begin{aligned}
\mathcal{P}=\{\phi \in \mathcal{C} & =\mathcal{C}\left([-\tau, 0], \mathbb{R}^{n k}\right) \mid \phi=\operatorname{col}\left(\phi_{1}, \phi_{2}, \ldots, \phi_{k}\right) \\
\phi_{i} & \left.=\phi_{j} \text { for some unordered pair(s) }(i, j) \in \mathcal{V} \times \mathcal{V}\right\}
\end{aligned}
$$

is a partial synchronization manifold if it is positively invariant w.r.t. the coupled systems' dynamics

$$
\dot{x}(t)=F(x(t))-(D \otimes B C) x(t)+(A \otimes B C) x(t-\tau)
$$

with

$$
x(t)=\left(\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{k}(t)
\end{array}\right) \in \mathbb{R}^{k n} \quad \text { and } \quad F(x(t))=\left(\begin{array}{c}
f\left(x_{1}(t)\right) \\
\vdots \\
f\left(x_{k}(t)\right)
\end{array}\right)
$$

Partial synchronization manifolds

Let $\Pi \in \mathbb{R}^{k \times k}$ a permutation matrix other than identity and

$$
\begin{aligned}
& \mathcal{P}(\Pi):=\left\{\phi \in \mathcal{C}\left([-\tau, 0], \mathbb{R}^{k n}\right) \mid \phi=\operatorname{col}\left(\phi_{1}, \phi_{2}, \ldots, \phi_{k}\right)\right. \\
& \\
& \left.\phi(\theta) \in \operatorname{ker}\left(I_{k n}-\Pi \otimes I_{n}\right),-\tau \leq \theta \leq 0\right\}
\end{aligned}
$$

Example with $k=3$
$\Pi_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right), \Pi_{2}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right), \Pi_{3}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \Pi_{4}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$

KU LEUVEN

Existence of partial synchronization manifolds

Given the coupled systems' dynamics

$$
\dot{x}(t)=F(x(t))-(D \otimes B C) x(t)+(A \otimes B C) x(t-\tau)
$$

how to find a permutation matrix $\Pi \neq I$ such that $\mathcal{P}(\Pi)$ is a partial synchronization manifold?

Existence of partial synchronization manifolds

Given the coupled systems' dynamics

$$
\dot{x}(t)=F(x(t))-(D \otimes B C) x(t)+(A \otimes B C) x(t-\tau)
$$

how to find a permutation matrix $\Pi \neq I$ such that $\mathcal{P}(\Pi)$ is a partial synchronization manifold?

Conditions for existence of partial synchronization manifolds independent of f
\Rightarrow all information necessary to find a partial synchronization manifold is in the graph $\mathcal{G}=(\mathcal{V}, \mathcal{E}, A)$

Structure in adjacency matrix

Let $K:=\operatorname{dim} \operatorname{ker}(I-\Pi) \leq k-1$. If all blocks of the block partitioned adjacency matrix

$$
A=\left(\begin{array}{cccc}
A_{11} & A_{2 K} & \cdots & A_{1 K} \\
A_{21} & A_{22} & \cdots & A_{2 K} \\
\vdots & \ddots & \ddots & \vdots \\
A_{K 1} & A_{K 2} & \cdots & A_{K K}
\end{array}\right)
$$

have constant row sums, then $\mathcal{P}(\Pi)$ with

$$
\Pi=\left(\begin{array}{ccc}
\Pi_{1} & & \\
& \ddots & \\
& & \Pi_{K}
\end{array}\right), \quad \begin{gathered}
\Pi_{i} \text { are cyclic permutation matrices } \\
\text { of dimension } \operatorname{dim}\left(A_{i i}\right)
\end{gathered}
$$

is a partial synchronization manifold

Algebraic conditions

For a permutation matrix $\Pi \neq I$, if

- $\Pi D=D \Pi$ and
- $\operatorname{ker}(I-\Pi)$ is a right invariant subspace of A, i.e.
$A v \in \operatorname{ker}(I-\Pi)$ for all $v \in \operatorname{ker}(I-\Pi)$,
then $\mathcal{P}(\Pi)$ is a partial synchronization manifold

For a permutation matrix $\Pi \neq I$, if

- $\Pi D=D \Pi$ and
- there exist a solution $X \in \mathbb{R}^{k \times k}$ to the matrix equation

$$
(I-\Pi) A=X(I-\Pi)
$$

then $\mathcal{P}(\Pi)$ is a partial synchronization manifold

Balanced coloring

Let

$$
a_{i j}=\sum_{\ell} \bar{a}_{\ell} k_{i j}^{\ell}, \quad \bar{a}_{\ell} \in \mathbb{R}_{+}, \quad k_{i j}^{\ell} \in \mathbb{Z}_{+}
$$

with $\bar{a}_{\ell}, \ell=1, \ldots, r$, rationally independent
Construct a multigraph $\tilde{\mathcal{G}}=\left(\mathcal{V}, \tilde{\mathcal{E}}_{1}, \bar{A}_{1}, \ldots, \tilde{\mathcal{E}}_{r}, \bar{A}_{r}\right)$ from $\mathcal{G}=(\mathcal{V}, \mathcal{E}, A)$ by replacing each edge $(i, j) \in \mathcal{E}$ of weight $a_{i j}$ by $k_{i j}^{\ell}$ edges of weight \bar{a}_{ℓ}.
Definition: Edges in $\tilde{\mathcal{G}}$ with the same weight \bar{a}_{ℓ} are equivalent

Balanced coloring

Definition

A coloring of the nodes of $\tilde{\mathcal{G}}$ with K colors is a balanced coloring if and only if, for all $i, j=1, \ldots, K$, every c_{i}-colored node receives edges of the same equivalence class (i.e. with same weight \bar{a}_{ℓ}) from an equal number of nodes with color c_{j}

Balanced coloring

For a permutation matrix $\Pi \neq I$, let \sim_{Π} be the equivalence relations induced by Π :

$$
i \sim_{\Pi} j \Leftrightarrow v_{i}=v_{j} \text { for any } v=\operatorname{col}\left(v_{1}, \ldots, v_{k}\right) \in \operatorname{ker}(I-\Pi)
$$

Color the multigraph $\tilde{\mathcal{G}}$ by assigning the nodes the same color if and only if they belong to the same equivalence class \sim_{Π}.
If this coloring is a balanced coloring, then $\mathcal{P}(\Pi)$ is a partial synchronization manifold.

Equivalent conditions for positively invariant $\mathcal{P}(\Pi)$

Theorem

Given $\mathcal{G}=(\mathcal{V}, \mathcal{E}, A)$ and a permutation matrix $\Pi \neq I$. The following statements are equivalent

- all blocks of the structured adjacency matrix have constant row sums
- $\Pi D=D \Pi$ and $\operatorname{ker}(I-\Pi)$ is a right invariant subspace of A
- $\Pi D=D \Pi$ and there exist a solution $X \in \mathbb{R}^{k \times k}$ to the matrix equation

$$
(I-\Pi) A=X(I-\Pi)
$$

- the coloring of the multigraph $\tilde{\mathcal{G}}$ according to the equivalence relations \sim_{Π} is balanced

Outline

Problem setting

Partial synchronization manifolds

Stability of partial synchronization manifolds

Example

Concluding remarks

Change of coordinates

Assumption: $C B$ is (similar to) a positive definite matrix
There is a well-defined change of coordinates $x_{i} \mapsto\left(z_{i}, y_{i}\right)$ such that

$$
\left\{\begin{array}{l}
\dot{z}_{i}(t)=q\left(z_{i}(t), y_{i}(t)\right) \\
\dot{y}_{i}(t)=a\left(y_{i}(t), z_{i}(t)\right)+C B u_{i}(t)
\end{array}\right.
$$

Convergent internal dynamics

Definition

A system

$$
\dot{z}_{i}(t)=q\left(z_{i}(t), \bar{y}(t)\right)
$$

with state $z_{i}(t) \in \mathbb{R}^{p}$ and input $\bar{y}(t)$ that take values on some compact set $\mathcal{Y} \subset \mathbb{R}^{m}$ is a convergent system if

- for any piece-wise continuous input $\bar{y}(t)$ defined on $\left[t_{0}, \infty\right)$, all solutions $z_{i}(\cdot)$ are defined and bounded for all $t \in\left[t_{0}, \infty\right)$ for all initial conditions $z_{i}\left(t_{0}\right) \in \mathbb{R}^{p}$;
- for any piece-wise continuous input $\bar{y}(t)$ defined on $(-\infty, \infty)$, there exists a unique globally asymptotically stable solution $z_{\bar{y}}(\cdot)$ defined on $(-\infty,+\infty)$

Convergent internal dynamics

Demidovich condition

If there is a matrix $W=W^{\top}>0$ such that the matrix

$$
\left(\frac{\partial q}{\partial z_{i}}\left(z_{i}, \bar{y}\right)\right)^{\top} W+W\left(\frac{\partial q}{\partial z_{i}}\left(z_{i}, \bar{y}\right)\right)
$$

is uniformly negative definite on $\mathbb{R}^{p} \times \mathcal{Y}$, then the system

$$
\dot{z}_{i}(t)=q\left(z_{i}(t), \bar{y}(t)\right)
$$

is a convergent system
A. Pavlov, N. v.d. Wouw and H. Nijmeijer, "Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach", Birkhäuser, 2006

A partial synchronization theorem

Theorem

Suppose that the solutions of the coupled systems are uniformly ultimately bounded and $\mathcal{P}(\Pi)$ with $\Pi \neq I$ is a partial synchronization manifold. If

- the subsystem $\dot{z}_{i}(t)=q\left(z_{i}(t), y_{i}(t)\right)$ satisfies the Demidovich condition
- there is a constant $c>0$ such that

$$
(I-\Pi)^{\top}\left(D-\frac{1}{2}\left(X+X^{\top}\right)\right)(I-\Pi) \geq c(I-\Pi)^{\top}(I-\Pi)
$$

then there exist constants $\bar{\sigma}$ and γ such that for

$$
\sigma \geq \bar{\sigma} \text { and } \sigma \tau \leq \gamma
$$

$\mathcal{P}(\Pi)$ is asymptotically stable

A partial synchronization theorem

Outline

Problem setting
 Partial synchronization manifolds
 Stability of partial synchronization manifolds

Example

Concluding remarks

A network of Hindmarsh-Rose model neurons

The Hindmarsh-Rose model neuron:

$$
\begin{aligned}
\dot{z}_{1, i}(t) & =0.001\left(4\left(y_{i}(t)+0.795\right)-z_{1, i}(t)\right) \\
\dot{z}_{2, i}(t) & =1-5 y_{i}^{2}(t)-z_{2, i}(t) \\
\dot{y}_{i}(t) & =-y_{i}^{3}(t)+3 y_{i}^{2}(t)-z_{1, i}(t)+z_{2, i}(t)+u_{i}(t)
\end{aligned}
$$

Properties:

- strictly semi-passive with a quadratic storage function \Rightarrow solutions of any network of Hindmarsh-Rose model neurons are uniformly bounded and uniformly ultimately bounded
- convergent z_{i}-dynamics

Remark: Many model neurons are strictly semi-passive and have convergent internal dynamics

Network 1

The network

- simple
- strongly connected

Network 1

The network

- simple
- strongly connected

Balanced coloring 1

\Rightarrow full sync manifold $\mathcal{S}=\mathcal{P}\left(\Pi_{1}\right)$

$$
\Pi_{1}=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

KULEUVEN

Network 1

The network

- simple
- strongly connected

Balanced coloring 2

\Rightarrow partial sync manifold $\mathcal{P}\left(\Pi_{2}\right)$

$$
\Pi_{2}=\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

KULEUVEN

Stability of $\mathcal{P}\left(\Pi_{1}\right)$ and $\mathcal{P}\left(\Pi_{2}\right)$

- $\left(I-\Pi_{1}\right) A=X_{1}\left(I-\Pi_{1}\right)$ with

$$
X_{1}=\frac{1}{3}\left(\begin{array}{rrrrrr}
3 & 3 & 3 & -9 & -6 & 6 \\
4 & -8 & -8 & 4 & 4 & 4 \\
-6 & 6 & 3 & 3 & 3 & -9 \\
4 & 4 & 4 & -8 & -8 & 4 \\
3 & -9 & -6 & 6 & 3 & 3 \\
-8 & 4 & 4 & 4 & 4 & 8
\end{array}\right)
$$

- Π_{2} and A commute, i.e. $\Pi_{2} A=A \Pi_{2}$

$$
\begin{gathered}
\left(I-\Pi_{2}\right) A=A\left(I-\Pi_{2}\right)=X_{2}\left(I-\Pi_{2}\right) \\
*\left(I-\Pi_{i}\right)^{\top}\left(D-\frac{1}{2}\left(X_{i}+X_{i}^{\top}\right)\left(I-\Pi_{i}\right) \geq c_{i}\left(I-\Pi_{i}\right)^{\top}\left(I-\Pi_{i}\right),\right. \\
i=1,2, \text { with }
\end{gathered}
$$

$$
c_{1}=2.961 \text { and } c_{2}=4.297
$$

Numerical simulation results

Network 2

Balanced coloring 1

Balanced coloring 2

Numerical simulation results

Outline

Problem setting
Partial synchronization manifolds
Stability of partial synchronization manifolds
Example
Concluding remarks
KULEUVEN

Concluding remarks

Summary

- we have presented four equivalent conditions for existence of partial synchronization manifolds
- we have presented conditions for a partial synchronization manifold to be asymptotically stable
- extensions to multiple time-delay case and coupling $u_{i}(t)=\sigma \sum_{j \in \mathcal{N}_{i}} a_{i j}\left[y_{j}(t-\tau)-y_{i}(t-\tau)\right]$ are possible

Future research

- (numerically) efficient methods to determine (all) partial synchronization manifolds
- necessary conditions for asymptotic stability of partial synchronization manifolds
- robust/practical partial synchronization

Acknowledgments

> Cees van Leeuwen (KU Leuven) Wim Michiels (KU Leuven)
> Henk Nijmeijer (TU/e)
> Toshiki Oguchi (TMU)
> Sasha Pogromsky (TU/e)
> Ivan Tyukin (University of Leicester)

