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Networks

Weighted directed graph G = (V, E , A)

I finite node set V = {1, . . . , k}
I edge set E ⊂ V × V; (i, j) ∈ E denotes an edge from j to i

I weighted adjacency matrix A ∈ Rk×k
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V = {1, 2, 3, 4}
E = {(1, 4), (2, 1), (3, 4), (4, 2), (4, 3)}

A =


0 0 0 a
b 0 0 0
0 0 0 c
0 d e 0





Networks

Weighted directed graph G = (V, E , A)

I G is assumed to be simple, i.e. (i, i) /∈ E for all i ∈ V, and
strongly connected

I neighborsets Ni = {j ∈ V|(i, j) ∈ E}, i ∈ V
I weighted in-degree matrix D ∈ Rk×k
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N1 = {4} N2 = {1}
N3 = {4} N4 = {2, 3}

D =


a
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Node dynamics and coupling functions
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Each node i ∈ V is assigned the dynamics{
ẋi(t) = f(xi(t)) +Bui(t)
yi(t) = Cxi(t)

with

- state xi(t) ∈ Rn

- input(s) ui(t) ∈ Rm, 1 ≤ m ≤ n
- output(s) yi(t) ∈ Rm

- locally Lipschitz continuous function f : Rn → Rn

- matrices B,C> ∈ Rn×m with

rank(BC) = rank(CB) = m



Node dynamics and coupling functions
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Each node i ∈ V is assigned the dynamics{
ẋi(t) = f(xi(t)) +Bui(t)
yi(t) = Cxi(t)

The interaction between the systems is given by the linear
time-delay coupling law

ui(t) = σ
∑
j∈Ni

aij [yj(t− τ)− yi(t)]

with

I aij the entries of the weighted adjacency matrix A

I constant time-delay τ > 0

I constant coupling strength σ > 0



Partial Synchronization

Given

I a network G = (V, E , A)

I dynamical systems{
ẋi(t) = f(xi(t)) +Bui(t)
yi(t) = Cxi(t)

I coupling ui(t) = σ
∑

j∈Ni
aij [yj(t− τ)− yi(t)]

Partial synchronization = the asymptotic match of the state of
some, but not all, systems

xi(t; t0, φ)
t→∞−−−→ xj(t; t0, φ) for some i, j ∈ V
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Partial synchronization manifolds

A set

P =
{
φ ∈ C = C([−τ, 0],Rnk)

∣∣∣φ = col(φ1, φ2, . . . , φk)

φi = φj for some unordered pair(s) (i, j) ∈ V × V
}

is a partial synchronization manifold if it is positively invariant
w.r.t. the coupled systems’ dynamics

ẋ(t) = F (x(t))− (D ⊗BC)x(t) + (A⊗BC)x(t− τ)

with

x(t) =

x1(t)
...

xk(t)

 ∈ Rkn and F (x(t)) =

f(x1(t))
...

f(xk(t))





Partial synchronization manifolds

Let Π ∈ Rk×k a permutation matrix other than identity and

P(Π) :=
{
φ ∈ C([−τ, 0],Rkn)

∣∣∣φ = col(φ1, φ2, . . . , φk)

φ(θ) ∈ ker(Ikn −Π⊗ In),−τ ≤ θ ≤ 0
}

Example with k = 3

Π1 =

(
0 1 0
1 0 0
0 0 1

)
, Π2 =

(
0 0 1
0 1 0
1 0 0

)
, Π3 =

(
1 0 0
0 0 1
0 1 0

)
, Π4 =

(
0 1 0
0 0 1
1 0 0

)



Existence of partial synchronization manifolds

Given the coupled systems’ dynamics

ẋ(t) = F (x(t))− (D ⊗BC)x(t) + (A⊗BC)x(t− τ)

how to find a permutation matrix Π 6= I such that P(Π) is a
partial synchronization manifold?



Existence of partial synchronization manifolds

Given the coupled systems’ dynamics

ẋ(t) = F (x(t))− (D ⊗BC)x(t) + (A⊗BC)x(t− τ)

how to find a permutation matrix Π 6= I such that P(Π) is a
partial synchronization manifold?

Conditions for existence of partial synchronization manifolds
independent of f

⇒ all information necessary to find a partial synchronization
manifold is in the graph G = (V, E , A)



Structure in adjacency matrix

Let K := dim ker(I −Π) ≤ k − 1. If all blocks of the block
partitioned adjacency matrix

A =


A11 A2K · · · A1K

A21 A22 · · · A2K

...
. . .

. . .
...

AK1 AK2 · · · AKK


have constant row sums, then P(Π) with

Π =

Π1

. . .

ΠK

 ,
Πi are cyclic permutation matrices

of dimension dim(Aii)

is a partial synchronization manifold



Algebraic conditions

For a permutation matrix Π 6= I, if

I ΠD = DΠ and

I ker(I −Π) is a right invariant subspace of A, i.e.
Av ∈ ker(I −Π) for all v ∈ ker(I −Π),

then P(Π) is a partial synchronization manifold

For a permutation matrix Π 6= I, if

I ΠD = DΠ and

I there exist a solution X ∈ Rk×k to the matrix equation

(I −Π)A = X(I −Π)

then P(Π) is a partial synchronization manifold



Balanced coloring

Let
aij =

∑
`

ā`k
`
ij , ā` ∈ R+, k`ij ∈ Z+

with ā`, ` = 1, . . . , r, rationally independent

Construct a multigraph G̃ = (V, Ẽ1, Ā1, . . . , Ẽr, Ār) from
G = (V, E , A) by replacing each edge (i, j) ∈ E of weight aij by k`ij
edges of weight ā`.

Definition: Edges in G̃ with the same weight ā` are equivalent
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Balanced coloring

Definition

A coloring of the nodes of G̃ with K colors is a balanced coloring if
and only if, for all i, j = 1, . . . ,K, every ci-colored node receives
edges of the same equivalence class (i.e. with same weight ā`)
from an equal number of nodes with color cj

M. Golubitsky, I. Stewart and A. Török, SIAM J. Appl. Dyn. Syst. 4(1), 2005



Balanced coloring

For a permutation matrix Π 6= I, let ∼Π be the equivalence
relations induced by Π:

i ∼Π j ⇔ vi = vj for any v = col(v1, . . . , vk) ∈ ker(I −Π)

Color the multigraph G̃ by assigning the nodes the same color if
and only if they belong to the same equivalence class ∼Π.

If this coloring is a balanced coloring, then P(Π) is a partial
synchronization manifold.



Equivalent conditions for positively invariant P(Π)

Theorem

Given G = (V, E , A) and a permutation matrix Π 6= I. The
following statements are equivalent

I all blocks of the structured adjacency matrix have constant
row sums

I ΠD = DΠ and ker(I −Π) is a right invariant subspace of A

I ΠD = DΠ and there exist a solution X ∈ Rk×k to the matrix
equation

(I −Π)A = X(I −Π)

I the coloring of the multigraph G̃ according to the equivalence
relations ∼Π is balanced
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Change of coordinates

Assumption: CB is (similar to) a positive definite matrix

There is a well-defined change of coordinates xi 7→ (zi, yi) such
that {

żi(t) = q(zi(t), yi(t))
ẏi(t) = a(yi(t), zi(t)) + CBui(t)



Convergent internal dynamics

Definition

A system
żi(t) = q(zi(t), ȳ(t))

with state zi(t) ∈ Rp and input ȳ(t) that take values on some
compact set Y ⊂ Rm is a convergent system if

I for any piece-wise continuous input ȳ(t) defined on [t0,∞), all
solutions zi(·) are defined and bounded for all t ∈ [t0,∞) for
all initial conditions zi(t0) ∈ Rp;

I for any piece-wise continuous input ȳ(t) defined on (−∞,∞),
there exists a unique globally asymptotically stable solution
zȳ(·) defined on (−∞, +∞)

A. Pavlov, N. v.d. Wouw and H. Nijmeijer, “Uniform Output Regulation of Nonlinear Systems: A
Convergent Dynamics Approach”, Birkhäuser, 2006



Convergent internal dynamics

Demidovich condition

If there is a matrix W = W> > 0 such that the matrix(
∂q

∂zi
(zi, ȳ)

)>
W +W

(
∂q

∂zi
(zi, ȳ)

)
is uniformly negative definite on Rp × Y, then the system

żi(t) = q(zi(t), ȳ(t))

is a convergent system

A. Pavlov, N. v.d. Wouw and H. Nijmeijer, “Uniform Output Regulation of Nonlinear Systems: A
Convergent Dynamics Approach”, Birkhäuser, 2006



A partial synchronization theorem

Theorem

Suppose that the solutions of the coupled systems are uniformly
ultimately bounded and P(Π) with Π 6= I is a partial
synchronization manifold. If

I the subsystem żi(t) = q(zi(t), yi(t)) satisfies the Demidovich
condition

I there is a constant c > 0 such that

(I −Π)>(D − 1
2(X +X>))(I −Π) ≥ c(I −Π)>(I −Π)

then there exist constants σ̄ and γ such that for

σ ≥ σ̄ and στ ≤ γ

P(Π) is asymptotically stable



A partial synchronization theorem
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A network of Hindmarsh-Rose model neurons

The Hindmarsh-Rose model neuron:

ż1,i(t) = 0.001(4(yi(t) + 0.795)− z1,i(t))

ż2,i(t) = 1− 5y2
i (t)− z2,i(t)

ẏi(t) = −y3
i (t) + 3y2

i (t)− z1,i(t) + z2,i(t) + ui(t)

Properties:

I strictly semi-passive with a quadratic storage function
⇒ solutions of any network of Hindmarsh-Rose model neurons
are uniformly bounded and uniformly ultimately bounded

I convergent zi-dynamics

Remark: Many model neurons are strictly semi-passive and have
convergent internal dynamics



Network 1

The network

I simple

I strongly connected
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Network 1

The network

I simple

I strongly connected

Balanced coloring 1
⇒ full sync manifold S = P(Π1)

Π1 =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
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Network 1

The network

I simple

I strongly connected

Balanced coloring 2
⇒ partial sync manifold P(Π2)

Π2 =



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
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Stability of P(Π1) and P(Π2)

I (I −Π1)A = X1(I −Π1) with

X1 =
1

3



3 3 3 −9 −6 6
4 −8 −8 4 4 4
−6 6 3 3 3 −9

4 4 4 −8 −8 4
3 −9 −6 6 3 3
−8 4 4 4 4 8


I Π2 and A commute, i.e. Π2A = AΠ2

(I −Π2)A = A(I −Π2) = X2(I −Π2)

I (I −Πi)
>(D − 1

2(Xi +X>i )(I −Πi) ≥ ci(I −Πi)
>(I −Πi),

i = 1, 2, with

c1 = 2.961 and c2 = 4.297



Numerical simulation results
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Concluding remarks

Summary

I we have presented four equivalent conditions for existence of
partial synchronization manifolds

I we have presented conditions for a partial synchronization
manifold to be asymptotically stable

I extensions to multiple time-delay case and coupling
ui(t) = σ

∑
j∈Ni

aij [yj(t− τ)− yi(t− τ)] are possible

Future research

I (numerically) efficient methods to determine (all) partial
synchronization manifolds

I necessary conditions for asymptotic stability of partial
synchronization manifolds

I robust/practical partial synchronization
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