Partial synchronization in networks of systems with linear time-delay coupling

Erik Steur

KU Leuven, Faculty of Psychology and Educational Sciences
Research Group Experimental Psychology
Laboratory for Perceptual Dynamics
Network synchronization
Partial synchronization
Outline

Problem setting

Partial synchronization manifolds

Stability of partial synchronization manifolds

Example

Concluding remarks
Weighted directed graph $G = (\mathcal{V}, \mathcal{E}, A)$

- finite node set $\mathcal{V} = \{1, \ldots, k\}$
- edge set $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$; $(i, j) \in \mathcal{E}$ denotes an edge from j to i
- weighted adjacency matrix $A \in \mathbb{R}^{k \times k}$

$\mathcal{V} = \{1, 2, 3, 4\}$
$\mathcal{E} = \{(1, 4), (2, 1), (3, 4), (4, 2), (4, 3)\}$

$$A = \begin{pmatrix}
0 & 0 & 0 & a \\
b & 0 & 0 & 0 \\
0 & 0 & 0 & c \\
0 & d & e & 0
\end{pmatrix}$$
Networks

Weighted directed graph $G = (V, E, A)$

- G is assumed to be simple, i.e. $(i, i) \notin E$ for all $i \in V$, and strongly connected
- Neighbor sets $N_i = \{j \in V | (i, j) \in E\}$, $i \in V$
- Weighted in-degree matrix $D \in \mathbb{R}^{k \times k}$

\[
\begin{align*}
N_1 &= \{4\} & N_2 &= \{1\} \\
N_3 &= \{4\} & N_4 &= \{2, 3\}
\end{align*}
\]

\[
D = \begin{pmatrix}
 a & b \\
 c & d + e
\end{pmatrix}
\]
Each node $i \in V$ is assigned the dynamics

\[
\begin{cases}
\dot{x}_i(t) = f(x_i(t)) + B u_i(t) \\
y_i(t) = C x_i(t)
\end{cases}
\]

with

- state $x_i(t) \in \mathbb{R}^n$
- input(s) $u_i(t) \in \mathbb{R}^m$, $1 \leq m \leq n$
- output(s) $y_i(t) \in \mathbb{R}^m$
- locally Lipschitz continuous function $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$
- matrices $B, C^\top \in \mathbb{R}^{n \times m}$ with

$$\text{rank}(BC) = \text{rank}(CB) = m$$
Node dynamics and coupling functions

Each node \(i \in V \) is assigned the dynamics

\[
\begin{align*}
\dot{x}_i(t) &= f(x_i(t)) + Bu_i(t) \\
y_i(t) &= Cx_i(t)
\end{align*}
\]

The interaction between the systems is given by the linear time-delay coupling law

\[
u_i(t) = \sigma \sum_{j \in \mathcal{N}_i} a_{ij} [y_j(t - \tau) - y_i(t)]
\]

with

- \(a_{ij} \) the entries of the weighted adjacency matrix \(A \)
- constant time-delay \(\tau > 0 \)
- constant coupling strength \(\sigma > 0 \)
Partial Synchronization

Given

- a network $\mathcal{G} = (\mathcal{V}, \mathcal{E}, A)$
- dynamical systems

\[
\begin{align*}
\dot{x}_i(t) &= f(x_i(t)) + B u_i(t) \\
y_i(t) &= C x_i(t)
\end{align*}
\]

- coupling $u_i(t) = \sigma \sum_{j \in \mathcal{N}_i} a_{ij} [y_j(t - \tau) - y_i(t)]$

Partial synchronization = the asymptotic match of the state of some, but not all, systems

\[x_i(t; t_0, \phi) \xrightarrow{t \to \infty} x_j(t; t_0, \phi) \text{ for some } i, j \in \mathcal{V}\]
Problem setting

Partial synchronization manifolds

Stability of partial synchronization manifolds

Example

Concluding remarks
Partial synchronization manifolds

A set

\[\mathcal{P} = \left\{ \phi \in \mathcal{C} = \mathcal{C}([\tau, 0], \mathbb{R}^{nk}) \mid \phi = \text{col}(\phi_1, \phi_2, \ldots, \phi_k) \right\} \]

\[\phi_i = \phi_j \text{ for some unordered pair(s) } (i, j) \in \mathcal{V} \times \mathcal{V} \]

is a partial synchronization manifold if it is positively invariant w.r.t. the coupled systems’ dynamics

\[\dot{x}(t) = F(x(t)) - (D \otimes BC)x(t) + (A \otimes BC)x(t - \tau) \]

with

\[x(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_k(t) \end{pmatrix} \in \mathbb{R}^{kn} \quad \text{and} \quad F(x(t)) = \begin{pmatrix} f(x_1(t)) \\ \vdots \\ f(x_k(t)) \end{pmatrix} \]
Let $\Pi \in \mathbb{R}^{k \times k}$ a permutation matrix other than identity and

$$\mathcal{P}(\Pi) := \left\{ \phi \in C([-\tau, 0], \mathbb{R}^{kn}) \middle| \phi = \text{col}(\phi_1, \phi_2, \ldots, \phi_k) \right\}$$

$$\phi(\theta) \in \ker(I_{kn} - \Pi \otimes I_n), -\tau \leq \theta \leq 0$$

Example with $k = 3$

$$\Pi_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \Pi_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \Pi_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \Pi_4 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
Existence of partial synchronization manifolds

Given the coupled systems’ dynamics

\[\dot{x}(t) = F(x(t)) - (D \otimes BC)x(t) + (A \otimes BC)x(t - \tau) \]

how to find a permutation matrix \(\Pi \neq I \) such that \(\mathcal{P}(\Pi) \) is a partial synchronization manifold?
Existence of partial synchronization manifolds

Given the coupled systems’ dynamics

\[\dot{x}(t) = F(x(t)) - (D \otimes BC) x(t) + (A \otimes BC) x(t - \tau) \]

how to find a permutation matrix \(\Pi \neq I \) such that \(\mathcal{P}(\Pi) \) is a partial synchronization manifold?

Conditions for existence of partial synchronization manifolds independent of \(f \)

\[\Rightarrow \text{all information necessary to find a partial synchronization manifold is in the graph } \mathcal{G} = (V, E, A) \]
Let $K := \dim \ker(I - \Pi) \leq k - 1$. If all blocks of the block partitioned adjacency matrix

$$A = \begin{pmatrix}
A_{11} & A_{2K} & \cdots & A_{1K} \\
A_{21} & A_{22} & \cdots & A_{2K} \\
\vdots & \vdots & \ddots & \vdots \\
A_{K1} & A_{K2} & \cdots & A_{KK}
\end{pmatrix}$$

have constant row sums, then $\mathcal{P}(\Pi)$ with

$$\Pi = \begin{pmatrix}
\Pi_1 \\
\vdots \\
\Pi_K
\end{pmatrix}, \quad \Pi_i \text{ are cyclic permutation matrices of dimension } \dim(A_{ii})$$

is a partial synchronization manifold
Algebraic conditions

For a permutation matrix $\Pi \neq I$, if

- $\Pi D = D\Pi$ and
- $\ker(I - \Pi)$ is a right invariant subspace of A, i.e. $Av \in \ker(I - \Pi)$ for all $v \in \ker(I - \Pi)$,

then $\mathcal{P}(\Pi)$ is a partial synchronization manifold

For a permutation matrix $\Pi \neq I$, if

- $\Pi D = D\Pi$ and
- there exist a solution $X \in \mathbb{R}^{k \times k}$ to the matrix equation

$$(I - \Pi)A = X(I - \Pi)$$

then $\mathcal{P}(\Pi)$ is a partial synchronization manifold
Balanced coloring

Let

$$a_{ij} = \sum_{\ell} \bar{a}_{\ell} k_{ij}^{\ell}, \quad \bar{a}_{\ell} \in \mathbb{R}^+, \quad k_{ij}^{\ell} \in \mathbb{Z}^+$$

with \bar{a}_{ℓ}, $\ell = 1, \ldots, r$, rationally independent

Construct a multigraph $\tilde{G} = (V, \tilde{E}_1, \tilde{A}_1, \ldots, \tilde{E}_r, \tilde{A}_r)$ from $G = (V, E, A)$ by replacing each edge $(i, j) \in E$ of weight a_{ij} by k_{ij}^{ℓ} edges of weight \bar{a}_{ℓ}.

Definition: Edges in \tilde{G} with the same weight \bar{a}_{ℓ} are equivalent
Definition

A coloring of the nodes of \tilde{G} with K colors is a balanced coloring if and only if, for all $i, j = 1, \ldots, K$, every c_i-colored node receives edges of the same equivalence class (i.e. with same weight \bar{a}_ℓ) from an equal number of nodes with color c_j.
For a permutation matrix $\Pi \neq I$, let \sim_Π be the equivalence relations induced by Π:

$$i \sim_\Pi j \iff v_i = v_j \text{ for any } v = \col(v_1, \ldots, v_k) \in \ker(I - \Pi)$$

Color the multigraph \tilde{G} by assigning the nodes the same color if and only if they belong to the same equivalence class \sim_Π.

If this coloring is a balanced coloring, then $\mathcal{P}(\Pi)$ is a partial synchronization manifold.
Theorem

Given $\mathcal{G} = (\mathcal{V}, \mathcal{E}, A)$ and a permutation matrix $\Pi \neq I$. The following statements are equivalent

- all blocks of the structured adjacency matrix have constant row sums
- $\Pi D = D \Pi$ and $\ker(I - \Pi)$ is a right invariant subspace of A
- $\Pi D = D \Pi$ and there exist a solution $X \in \mathbb{R}^{k \times k}$ to the matrix equation
 \[(I - \Pi)A = X(I - \Pi) \]
- the coloring of the multigraph $\tilde{\mathcal{G}}$ according to the equivalence relations \sim_Π is balanced
Problem setting

Partial synchronization manifolds

Stability of partial synchronization manifolds

Example

Concluding remarks
Assumption: \(CB \) is (similar to) a positive definite matrix

There is a well-defined change of coordinates \(x_i \mapsto (z_i, y_i) \) such that

\[
\begin{align*}
\dot{z}_i(t) &= q(z_i(t), y_i(t)) \\
\dot{y}_i(t) &= a(y_i(t), z_i(t)) + CBu_i(t)
\end{align*}
\]
Convergent internal dynamics

Definition

A system

\[\dot{z}_i(t) = q(z_i(t), \bar{y}(t)) \]

with state \(z_i(t) \in \mathbb{R}^p \) and input \(\bar{y}(t) \) that take values on some compact set \(\mathcal{Y} \subset \mathbb{R}^m \) is a convergent system if

- for any piece-wise continuous input \(\bar{y}(t) \) defined on \([t_0, \infty)\), all solutions \(z_i(\cdot) \) are defined and bounded for all \(t \in [t_0, \infty) \) for all initial conditions \(z_i(t_0) \in \mathbb{R}^p \);

- for any piece-wise continuous input \(\bar{y}(t) \) defined on \((\infty, \infty)\), there exists a unique globally asymptotically stable solution \(z_{\bar{y}}(\cdot) \) defined on \((\infty, \infty)\)

Convergent internal dynamics

Demidovich condition

If there is a matrix $W = W^\top > 0$ such that the matrix

$$\left(\frac{\partial q}{\partial z_i}(z_i, \bar{y}) \right)^\top W + W \left(\frac{\partial q}{\partial z_i}(z_i, \bar{y}) \right)$$

is uniformly negative definite on $\mathbb{R}^p \times \mathcal{Y}$, then the system

$$\dot{z}_i(t) = q(z_i(t), \bar{y}(t))$$

is a convergent system

A partial synchronization theorem

Theorem

Suppose that the solutions of the coupled systems are uniformly ultimately bounded and $\mathcal{P}(\Pi)$ with $\Pi \neq I$ is a partial synchronization manifold. If

- the subsystem $\dot{z}_i(t) = q(z_i(t), y_i(t))$ satisfies the Demidovich condition
- there is a constant $c > 0$ such that

\[
(I - \Pi)^\top (D - \frac{1}{2}(X + X^\top))(I - \Pi) \geq c(I - \Pi)^\top (I - \Pi)
\]

then there exist constants $\bar{\sigma}$ and γ such that for

\[
\sigma \geq \bar{\sigma} \quad \text{and} \quad \sigma \tau \leq \gamma
\]

$\mathcal{P}(\Pi)$ is asymptotically stable
A partial synchronization theorem

\[\sigma = \bar{\sigma} \]

\[\mathcal{P}(\Pi) \text{ stable} \]

\[\sigma \tau = \gamma \]
Outline

Problem setting

Partial synchronization manifolds

Stability of partial synchronization manifolds

Example

Concluding remarks
A network of Hindmarsh-Rose model neurons

The Hindmarsh-Rose model neuron:

\[
\begin{align*}
\dot{z}_{1,i}(t) &= 0.001(4(y_i(t) + 0.795) - z_{1,i}(t)) \\
\dot{z}_{2,i}(t) &= 1 - 5y_i^2(t) - z_{2,i}(t) \\
\dot{y}_i(t) &= -y_i^3(t) + 3y_i^2(t) - z_{1,i}(t) + z_{2,i}(t) + u_i(t)
\end{align*}
\]

Properties:

▶ strictly semi-passive with a quadratic storage function
 ⇒ solutions of any network of Hindmarsh-Rose model neurons are uniformly bounded and uniformly ultimately bounded

▶ convergent \(z_i\)-dynamics

Remark: Many model neurons are strictly semi-passive and have convergent internal dynamics
Network 1

The network

- simple
- strongly connected
The network

- simple
- strongly connected

Balanced coloring 1

⇒ full sync manifold $\mathcal{S} = \mathcal{P}(\Pi_1)$

$$\Pi_1 = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$
The network
- simple
- strongly connected

Balanced coloring 2
⇒ partial sync manifold $\mathcal{P}(\Pi_2)$

$$\Pi_2 = \begin{pmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$
Stability of $\mathcal{P}(\Pi_1)$ and $\mathcal{P}(\Pi_2)$

- $(I - \Pi_1)A = X_1(I - \Pi_1)$ with

$$X_1 = \frac{1}{3} \begin{pmatrix}
3 & 3 & 3 & -9 & -6 & 6 \\
4 & -8 & -8 & 4 & 4 & 4 \\
-6 & 6 & 3 & 3 & 3 & -9 \\
4 & 4 & 4 & -8 & -8 & 4 \\
3 & -9 & -6 & 6 & 3 & 3 \\
-8 & 4 & 4 & 4 & 4 & 8
\end{pmatrix}$$

- Π_2 and A commute, i.e. $\Pi_2 A = A \Pi_2$

$$(I - \Pi_2)A = A(I - \Pi_2) = X_2(I - \Pi_2)$$

- $(I - \Pi_i)\top(D - \frac{1}{2}(X_i + X_i\top))(I - \Pi_i) \geq c_i(I - \Pi_i)\top(I - \Pi_i)$, $i = 1, 2$, with

$$c_1 = 2.961 \quad \text{and} \quad c_2 = 4.297$$
Numerical simulation results
Network 2

Balanced coloring 1

Balanced coloring 2
Numerical simulation results

![Graph showing numerical simulation results with regions labeled Part Sync and Full Sync.](image-url)
Outline

Problem setting

Partial synchronization manifolds

Stability of partial synchronization manifolds

Example

Concluding remarks
Concluding remarks

Summary

- we have presented four equivalent conditions for existence of partial synchronization manifolds
- we have presented conditions for a partial synchronization manifold to be asymptotically stable
- extensions to multiple time-delay case and coupling
 \[u_i(t) = \sigma \sum_{j \in \mathcal{N}_i} a_{ij} [y_j(t - \tau) - y_i(t - \tau)] \] are possible

Future research

- (numerically) efficient methods to determine (all) partial synchronization manifolds
- necessary conditions for asymptotic stability of partial synchronization manifolds
- robust/practical partial synchronization
Acknowledgments

Cees van Leeuwen (KU Leuven)
Wim Michiels (KU Leuven)
Henk Nijmeijer (TU/e)
Toshiki Oguchi (TMU)
Sasha Pogromsky (TU/e)
Ivan Tyukin (University of Leicester)