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Networks

Weighted directed graph G = (V, &, A)
> finite node set V = {1,...,k}

» edgeset £ CV x V; (i,7) € € denotes an edge from j to i
» weighted adjacency matrix A € RF*F
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Networks

Weighted directed graph G = (V, &, A)
» G is assumed to be simple, i.e. (i,i) ¢ £ for all i € V, and
strongly connected

» neighborsets \; = {j € V|(i,j) € £}, i €V
» weighted in-degree matrix D € R¥*¥

b
9—9O M ={4} Np={1}
Ns={4} Ny =1{2,3}
a q a
c D= b
@&g/e d+e



Node dynamics and coupling functions

b
Each node ¢ € V is assigned the dynamics Q ’Q
{ zi(t) = f(zi(t)) + Bug(t) @ f

yi(t) = C.%'z(t) c
O0———0Q

with ¢

- state z;(t) € R

- input(s) u;(t) e R™, 1 <m <n

- output(s) y;(t) € R™

- locally Lipschitz continuous function f: R™ — R"

- matrices B,CT € R™*™ with

rank(BC) = rank(CB) = m



Node dynamics and coupling functions

b
Each node ¢ € V is assigned the dynamics Q *@

{ ;i (t) = f(xi(t)) + Bu;(t) a f
yilt) = Cai(t) .
N_//Te

The interaction between the systems is given by the linear
time-delay coupling law

wi(t) = o Y aijly;(t = 7) — vi()]
JEN;
with
> a;j the entries of the weighted adjacency matrix A
> constant time-delay 7 > 0

» constant coupling strength o > 0 m



Partial Synchronization

Given
» anetwork G = (V, €&, A)

» dynamical systems

{ £i(t) = f(@:i(t)) + Bus(t)
yl(t) = CCCZ(t)

> coupling ui(t) = 0 e, aijly; (t — ) — yi(t)]
Partial synchronization = the asymptotic match of the state of
some, but not all, systems

t—o00

zi(t; to, §) —— xj(t;to, @) for some i, j € V



Partial synchronization manifolds



Partial synchronization manifolds

A set

P={pec=c(-r.0,R™)|6 = col(r,6s...., )
¢i = ¢; for some unordered pair(s) (i,j) € V x V}

is a partial synchronization manifold if it is positively invariant
w.r.t. the coupled systems’ dynamics

z(t) = F(z(t)) — (D® BC)z(t) + (A® BC)z(t — 1)
with

x1(t) f(z1(t))
) =| | eR™ and Fa@))=|

2ult) Flan()



Partial synchronization manifolds

Let IT € R*** a permutation matrix other than identity and

P(11) = {6 € C(1=7. 01, B")|6 = col(¢1, ¢z, ... &%)
6(0) € ker(I — L@ I,), —7 < 0 < 0}

Example with k =3

0 1 0 00
IIi=(1 0 o), Ilb=(0 1
0 0 1 1o

63(0)




Existence of partial synchronization manifolds

Given the coupled systems’ dynamics
z(t) = F(z(t)) — (D ® BC)x(t) + (A® BC)x(t — 1)

how to find a permutation matrix IT # I such that P(II) is a
partial synchronization manifold?



Existence of partial synchronization manifolds

Given the coupled systems’ dynamics
z(t) = F(z(t)) — (D ® BC)x(t) + (A® BC)x(t — 1)

how to find a permutation matrix IT # I such that P(II) is a
partial synchronization manifold?

Conditions for existence of partial synchronization manifolds
independent of f
= all information necessary to find a partial synchronization
manifold is in the graph G = (V, &, A)



Structure in adjacency matrix

Let K := dimker(I —II) < k — 1. If all blocks of the block
partitioned adjacency matrix

A Ak - Ak

A1 Axx - Aok
A= . ) ) )

A1 Ag2 -+ Agk

have constant row sums, then P(II) with
I
= )
Ik

II; are cyclic permutation matrices
of dimension dim(A;;)

is a partial synchronization manifold




Algebraic conditions

For a permutation matrix II # [, if
» [ID = DII and

» ker(I — II) is a right invariant subspace of 4, i.e.
Av € ker(I —1I) for all v € ker(I — 1II),

then P(II) is a partial synchronization manifold

For a permutation matrix I # I, if
» [ID = DII and
» there exist a solution X € R*** to the matrix equation

(I-T)A=X(I—T)

then P(II) is a partial synchronization manifold

v




Balanced coloring

Let

Qjj = Z agkfj, ag € Ry, kfj S/
)4
with ag, £ =1,...,r, rationally independent
Construct a multigraph G = (V, &1, A1, ..., &, A,) from
G = (V,&, A) by replacing each edge (i, j) € £ of weight a;; by kfj
edges of weight ay.

Definition: Edges in G with the same weight @, are equivalent




Balanced coloring

Definition
A coloring of the nodes of G with K colors is a balanced coloring if
and only if, for all 4,5 = 1,..., K, every c;-colored node receives

edges of the same equivalence class (i.e. with same weight ay)
from an equal number of nodes with color ¢;

@ M. Golubitsky, |. Stewart and A. Térok, SIAM J. Appl. Dyn. Syst. 4(1), 2005 m



Balanced coloring

For a permutation matrix II # I, let ~g1 be the equivalence
relations induced by II:

i ~11 J < v; = vj for any v = col(vy, ..., vx) € ker(I — II)

Color the multigraph G by assigning the nodes the same color if
and only if they belong to the same equivalence class ~rg.

If this coloring is a balanced coloring, then P(II) is a partial
synchronization manifold.




Equivalent conditions for positively invariant P (I1)

Given G = (V, &, A) and a permutation matrix IT # I. The
following statements are equivalent
» all blocks of the structured adjacency matrix have constant

row sums
» IID = DII and ker(I — II) is a right invariant subspace of A
» IID = DII and there exist a solution X € R*** to the matrix
equation
(I-MMA=X({-1I)

» the coloring of the multigraph G according to the equivalence
relations ~py is balanced




Stability of partial synchronization manifolds



Change of coordinates

Assumption: C'B is (similar to) a positive definite matrix

There is a well-defined change of coordinates x; — (z;,y;) such

that

{ 2i(t) = q(zi(t), yi(t))
i(t) = aly

i(t)’, Z3 (t)) + CB’LLZ (t)

Zi(t) = q(zi(t), ui(t))

———s! (1) = a(yi(t), (1)) + CBui(t)

Yi(t)



Convergent internal dynamics

Definition
A system
zi(t) = q(z(t), 9(t))
with state z;(t) € R? and input g(¢) that take values on some
compact set Y C R™ is a convergent system if
» for any piece-wise continuous input g(t) defined on [t, c0), all
solutions z;(+) are defined and bounded for all ¢ € [tg, c0) for
all initial conditions z;(tg) € RP?;
» for any piece-wise continuous input ¢(¢) defined on (—o0, c0),
there exists a unique globally asymptotically stable solution
2y (+) defined on (—o0, +00)

& A. Pavlov, N. v.d. Wouw and H. Nijmeijer, “Uniform Output Regulation of Nonlinear Systems: A
Convergent Dynamics Approach”, Birkhauser, 2006



Convergent internal dynamics

Demidovich condition

If there is a matrix W = W T > 0 such that the matrix

(52 <zl,y>> W w (5L Gn)

is uniformly negative definite on R? x )/, then the system

zi(t) = q(zi(), 5 (1))

is a convergent system

Q A. Pavlov, N. v.d. Wouw and H. Nijmeijer, “Uniform Output Regulation of Nonlinear Systems: A

Convergent Dynamics Approach”, Birkhauser, 2006



A partial synchronization theorem

Theorem

Suppose that the solutions of the coupled systems are uniformly
ultimately bounded and P(II) with II # I is a partial
synchronization manifold. If

» the subsystem Z;(t) = q(z;(t),y:(t)) satisfies the Demidovich
condition

» there is a constant ¢ > 0 such that
I-M'D-YX+XT)H)I-T)>c(I-1) (I -1
then there exist constants & and « such that for

oc>06 and o1 <7

P(II) is asymptotically stable




A partial synchronization theorem

\0

I
Qi




Example



A network of Hindmarsh-Rose model neurons

The Hindmarsh-Rose model neuron:

2':171‘(15) = 0.001(4(y2-(t) + 0.795) — Z17i(t))
Zg’i(t) =1- 5yi2 (t) — Zz’i(t)
Gi(t) = =y (8) + 3yF (t) — 21,4(8) + 22, (t) + wi(t)

Properties:

» strictly semi-passive with a quadratic storage function
= solutions of any network of Hindmarsh-Rose model neurons
are uniformly bounded and uniformly ultimately bounded

> convergent z;-dynamics

Remark: Many model neurons are strictly semi-passive and have
convergent internal dynamics



The network
> simple

» strongly connected




The network
> simple

» strongly connected

Balanced coloring 1
= full sync manifold & = P(11;)
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The network
> simple

» strongly connected

Balanced coloring 2
= partial sync manifold P(Il3)

1T,
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Stability of P(I1;) and P(Il,)

> (I—Hl)A = Xl(I— Hl) with

3 3 3 -9 —6 6
4 -8 —8 4 4 4

1l =6 6 3 3 3 —9
X1=3 4 4 4 -8 -8 4
3 -9 -6 6 3 3

8 4 4 4 4 8

» II; and A commute, i.e. IIoA = Ally
(I —TIx)A = A(I —1Iy) = Xo(I —1Ig)

» (I-1L)"(D—3(Xi+X,))(I —1L) > (I —IL;) " (I — 1I,),
i =1,2, with

c1 = 2.961 and co = 4.297



Numerical simulation results
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Numerical simulation results
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Concluding remarks



Concluding remarks

Summary

» we have presented four equivalent conditions for existence of
partial synchronization manifolds

» we have presented conditions for a partial synchronization
manifold to be asymptotically stable

> extensions to multiple time-delay case and coupling
ui(t) = 0 e aijly;(t — 7) — yi(t — 7)] are possible

Future research

» (numerically) efficient methods to determine (all) partial
synchronization manifolds

» necessary conditions for asymptotic stability of partial
synchronization manifolds

» robust/practical partial synchronization
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