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Preliminaries. Invariance and attractivity

x=f(x),x € R™ f(-)islocally Lipschitz in D (open in R")

Aset S c D is forward (positively) invariant if for every x, € S
x(+,xq) is defined on [0, 00) and x(t,x,) €S forallt > 0

AsetS C D isinvariant if for everyxy €S x(-,xg) is defined on
(—o0,0) and x(t,x,) € S forallt.

A closed invariant set is weakly attracting if there exists a set V of
strictly positive measure such that for all x, € V the solution
x(.,xq) is defined on [0, ) and

lim dist(S,x(t, xo)) =0

t— oo




Preliminaries. Attractivity and stability

The set S € D (closed, invariant) is attracting if
1) it is weakly attracting

Z) V is a neighbourhood of S and

) V is forward-invariant

The set is stable in the sense of Lyapunov if for any neighbourhood
V of S there is a forward invariant neighbourhood W < D of S
suchthatW cV




Preliminaries. Motivation

This nested structure offers a remarkably conven/ent tool the
second Lyapunov method - e
Level sets

Tangential condition:
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Dynamical Models of Decision-Making in Neural Systems

Figure 1. Schematic representation of a stable hetenpclinic
channel. The SHC is built with trajectories that condense in the Xicinity
of the saddle chain and their unstable separatrices (dashed \i
connecting the surrounding saddles (circles). The thick line represgnts
an example of a trajectory in the SHC. The interval t..,—t; is tNe
characteristic time that the system needs to move from the metastable
state k to the k+1.

M. Rabinovich et al. 2008, PLOS Comp. Biology



A phase synchronization example
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Xg=1+x2+e(5(t—t,)+6(—t.))

Xp =1+ x2 +€e(6(t —ty)) \

Xe =1+ x2+€e(xq — x;)

qba = E/T[(Sin2 (Pp — ¢a) + sin® (bc — Pa))
bp = €/msin®(¢pg — ¢Pp)

1 ( 6 J
¢c — 61/2 Sin(2(¢a_¢c))
:¢b_¢arx:¢a_¢c




A phase synchronization example
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qsa = E/n(Sinz(qbb — ¢Pg) + sin® (Pc — da))
¢p = €/msin®(Pp, — ¢p)

(ﬁc = €1/2sin(2(¢pg—¢c)) A=¢, — g, x =, — P,

. E 2( )
= ——SIn"(x
T

{9’6 = %[sin2 (1) + sin?(x)] — %sin(Zx)
A



Preliminaries. Issues

Is origin an attractor?

x=—-x+2 X =—x%+2
A=—ylx]? A=—ylx|?




Problem statement

(1) {x = f(x,A,t)

where

A=g(x A t)

f:R"XRXR— R",
g R*"XRXR->R

1) continuous and locally Lipschitz uniformly in t

2) g is not allowed to change its sign (e.g. non-positive)

3) (0,0) is an equilibrium and 0 is a weak attractor of x = f(x, 0, t)
4) there is a p > 0 and a set w(p) which is forward invariant for

(2) x = f(x,A,t)
forall A € [0, p] ( for simplicity the set w(p) can be set to R™)

Determine if (0,0) is an attractor for (1)?




Assumptions

Let D be an open subset of R", A = [c;, 3], ¢; < 0,c; > 0 be an interval, and
the closure of D contains the origin. Denote D = D X A X R

Assumption 1. There is a continuous function V: R™ — R that is differentiable
everywhere except for the origin, and five functions of one variable, a, @ € K,
a,B:Rso = R, a, € CO([0,)), a(0) = 0, ¢ € K, such that for every
(x,2,t) € (D \ {0}) Xx AX R the following holds:

) oV
a(llx]) = V() < a(llx]), af(x, Lt < a(V(x) + B(V(E))e(A])

Assumption 2. There exist functions 6,& € K, such that the following holds for
all (x,A,t) € Dg:

=&(AD) = 6(llxI) < glx,4,t) <0




Results

Lemma 1 (The second Lyapunov method for (1))
Let Assumptions 1,2 hold for (1). Suppose that

(C1) there exists a function 1 € K N C1(0, ) and a number a such that for all
V€ (0,a]

3) P () + B9 ())) + 8(a (V) + E(W(V)) < 0

(C2) the set w(y(a)) exists and either D contains w(y(a)) or the ball {x| x € R™,
lxll < @)} is in D

(C3) the set 2, \ {(0,0)} where

(4) | Q= {(x,Dlx € w(¥(a)),A € Rsp, Y(@) 2 A2 Y(V(x)), V(x) € (0,a]}

is in the interior of D X A .

Then (2, is forward invariant with respect to the dynamics of (1)




Results. Sketch

Qg = {(x, Dlx € w(¥(a)), A € Ry, Y(a) =12 y(V(x)), V(x) € (0,a]}

4 v ()>A

@rdy) td

B
v (M) <A ‘>’

@m,dx) |

oY)

v (a0 + BWIp(b()) + (e W) +£(p() < 0




Results.
Corollary (The second Lyapunov method for (1))

Let D = R™, A = R and Assumptions 1,2 hold. Suppose that there exists a function
P € K N C1(0,) and a number a such that for all V € (0, a] (3) holds:

W)

WD (a) + B0 (W) + 5(a 1)) + (b)) < 0

Then the set
Qg = {(x,D]|x ERMAE Ry, Y(@) =2 A=y(V(x)), V(x) € (0,a]}

is forward invariant with respect to the dynamaics of (1)




Will this help with issues? " @
————7 =

0.1FE
{56 =-x+4 -
A=yl IS ==

e —
V(x) = x2, a(V) = =2V, B(V) = 2V \%
102 5T

.05 025 0 025 X
Y(V) =pV, p>0, (2 = 14|, () =0, §(x]) = yIx|®

0
% (a(V) + BWMpAD) + 6(¥V) < 0

(—2p+ P2+ y)VV)V <0

2p
2pt +y

2
Q, ={(x,)|x €eR,LER, p( )212px2, P € Ry} [14}
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Will this help with issues?
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Will this help with issues?

Sets corresponding to solutions that do not converge to the origin can be
specified in the same manner (please see the ms on the table)




Are these estimates tight?

X1 = —TXq1 + C1Xy
{ 332:—6'2|x1| ’ T;C11C2>0 ‘(/):p\/v’p>0’ V:x%
c; <p(t—pcy) is the resulting condition
2
T
p=1/(2c;) maximizes the rhs 2 c, < 4—C1




Are these estimates tight?

A sister system

X1 = —Tx1 + c1X;
y ) T)C ;C > 0 — — —_ —
{ Xy = —Cyxyq 1, €2 (=7 = s)(=s)+cc; =0
s+ 1s+cc, =0
72
72 —4cic, <0 implies complex roots Cy < 4_01




A phase synchronization example
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Xg=1+x2+e(5(t—t,)+6(—t.))

Xp =1+ x2 +€e(6(t —ty)) \

Xe =1+ x2+€e(xq — x;)

qba = E/T[(Sin2 (Pp — ¢a) + sin® (bc — Pa))
bp = €/msin®(¢pg — ¢Pp)

. (1)
¢bc = €1/2sin(2(Pg—b¢))
= ¢p — Po, X = Pg — P
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A phase synchronization example



What's next?

» Convergence and convergence rates ?

* Analogue of the first Lyapunov method ?




