

The second Lyapunov method for *unstable* attractors

I. Tyukin

A.N. Gorban, E. Steur, H. Nijmeijer

Model Reduction Across Disciplines, Leicester 2014

Preliminaries. Invariance and attractivity

 $\dot{x} = f(x), x \in \mathbb{R}^n$ $f(\cdot)$ is locally Lipschitz in D (open in \mathbb{R}^n)

A set $S \subset D$ is **forward (positively) invariant** if for every $x_0 \in S$ $x(\cdot, x_0)$ is defined on $[0, \infty)$ and $x(t, x_0) \in S$ for all t > 0

A set $S \subset D$ is **invariant** if for every $x_0 \in S$ $x(\cdot, x_0)$ is defined on $(-\infty, \infty)$ and $x(t, x_0) \in S$ for all t.

A closed invariant set is **weakly attracting** if there exists a set V of strictly positive measure such that for all $x_0 \in V$ the solution $x(., x_0)$ is defined on $[0, \infty)$ and

$$\lim_{t\to\infty} dist\bigl(S, x(t, x_0)\bigr) = 0$$

Preliminaries. Attractivity and stability

The set $S \subset D$ (closed, invariant) is **attracting** if

- 1) it is weakly attracting
- 2) V is a neighbourhood of S and
- 3) V is forward-invariant

The set **is stable in the sense of Lyapunov** if for any neighbourhood V of S there is a forward invariant neighbourhood $W \subset D$ of S such that $W \subset V$

Preliminaries. Motivation

Dynamical Models of Decision-Making in Neural Systems

M. Rabinovich et al. 2008, PLOS Comp. Biology

A phase synchronization example

A phase synchronization example

 $\dot{\phi}_c = \epsilon_1/2 \sin(2(\phi_a - \phi_c))$ $\lambda = \phi_b - \phi_a, x = \phi_a - \phi_c$

$$\begin{cases} \dot{x} = \frac{\varepsilon}{\pi} [\sin^2 (\lambda) + \sin^2(x)] - \frac{\varepsilon_1}{2} \sin(2x) \\ \dot{\lambda} = -\frac{\varepsilon}{\pi} \sin^2(x) \end{cases}$$

Preliminaries. Issues

Is origin an attractor?

Problem statement

(1)

$$\begin{cases} \dot{x} = f(x, \lambda, t) \\ \dot{\lambda} = g(x, \lambda, t) \end{cases}$$

where

$$f: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}^n,$$

$$g: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

continuous and locally Lipschitz uniformly in t
g is not allowed to change its sign (e.g. non-positive)
(0,0) is an equilibrium and 0 is a weak attractor of x
 = f(x,0,t)
there is a p > 0 and a set ω(p) which is forward invariant for

(2)
$$\dot{x} = f(x, \lambda, t)$$

for all $\lambda \in [0, p]$ (for simplicity the set $\omega(p)$ can be set to \mathbb{R}^n)

Determine if (0,0) is an attractor for (1)?

Assumptions

Let D be an open subset of \mathbb{R}^n , $\Lambda = [c_1, c_2], c_1 \leq 0, c_2 > 0$ be an interval, and the closure of D contains the origin. Denote $D_{\Omega} = \overline{D} \times \Lambda \times \mathbb{R}$

Assumption 1. There is a continuous function $V: \mathbb{R}^n \to \mathbb{R}$ that is differentiable everywhere except for the origin, and five functions of one variable, $\underline{\alpha}, \overline{\alpha} \in K_{\infty}$, $\alpha, \beta: \mathbb{R}_{\geq 0} \to \mathbb{R}, \alpha, \beta \in C^0([0, \infty)), \alpha(0) = 0, \varphi \in K_0$ such that for every $(x, \lambda, t) \in (\overline{D} \setminus \{0\}) \times \Lambda \times \mathbb{R}$ the following holds:

$$\underline{\alpha}(\|x\|) \le V(x) \le \overline{\alpha}(\|x\|), \qquad \frac{\partial V}{\partial x}f(x,\lambda,t) \le \alpha \big(V(x)\big) + \beta \big(V(x)\big)\varphi(|\lambda|)$$

Assumption 2. There exist functions $\delta, \xi \in K_0$ such that the following holds for all $(x, \lambda, t) \in D_{\Omega}$:

$$-\xi(|\lambda|) - \delta(||x||) \le g(x,\lambda,t) \le 0$$

Results

Lemma 1 (The second Lyapunov method for (1))

Let Assumptions 1,2 hold for (1). Suppose that

(C1) there exists a function $\psi \in K \cap C^1(0, \infty)$ and a number a such that for all $V \in (0, a]$

(3)
$$\frac{\partial \psi(V)}{\partial V} \Big(\alpha(V) + \beta(V) \varphi(\psi(V)) \Big) + \delta(\underline{\alpha}^{-1}(V)) + \xi(\psi(V)) \le 0$$

(C2) the set $\omega(\psi(a))$ exists and either \overline{D} contains $\omega(\psi(a))$ or the ball $\{x \mid x \in \mathbb{R}^n, \|x\| \le \underline{\alpha}^{-1}(x)\}$ is in D

(C3) the set $\Omega_a \setminus \{(0,0)\}$ where

(4)
$$\Omega_a = \{(x,\lambda) | x \in \omega(\psi(a)), \lambda \in R_{\geq 0}, \ \psi(a) \geq \lambda \geq \psi(V(x)), \ V(x) \in (0,a]\}$$

is in the interior of $\overline{D} imes \Lambda$.

Then Ω_a is forward invariant with respect to the dynamics of (1)

Results. Sketch

Results.

Corollary (The second Lyapunov method for (1))

Let $D = R^n$, $\Lambda = R$ and Assumptions 1,2 hold. Suppose that there exists a function $\psi \in K \cap C^1(0, \infty)$ and a number a such that for all $V \in (0, a]$ (3) holds:

$$\frac{\partial \psi(V)}{\partial V} \Big(\alpha(V) + \beta(V) \varphi(\psi(V)) \Big) + \delta(\underline{\alpha}^{-1}(V)) + \xi(\psi(V)) \le 0$$

Then the set

$$\Omega_a = \{ (x,\lambda) | x \in \mathbb{R}^n, \lambda \in \mathbb{R}_{\geq 0}, \ \psi(a) \ge \lambda \ge \psi(V(x)), \ V(x) \in (0,a] \}$$

is forward invariant with respect to the dynamics of (1)

Will this help with issues? $\begin{cases} \dot{x} = -x + \lambda \\ \dot{\lambda} = -\gamma |x|^3 \end{cases}$ $V(x) = x^2, \ \alpha(V) = -2V, \ \beta(V) = 2\sqrt{V}$ (-0.1) = -0.2 = -0.5 = 0 $\psi(V) = pV, \ p > 0, \ \varphi(|\lambda|) = |\lambda|, \ \xi(\cdot) = 0, \ \delta(|x|) = \gamma |x|^3$

$$\begin{aligned} \frac{\partial \psi}{\partial V} \left(\alpha(V) + \beta(V)\varphi(|\lambda|) \right) + \delta(\sqrt{V}) &\leq 0 \\ \left(-2p + (2p^2 + \gamma)\sqrt{V} \right) V &\leq 0 \end{aligned}$$
$$\begin{aligned} \Omega_a &= \{ (x,\lambda) | x \in R, \lambda \in R, \qquad p \left(\frac{2p}{2p^2 + \gamma} \right)^2 \geq \lambda \geq px^2, \qquad p \in R_{\geq 0} \} \end{aligned}$$

Will this help with issues?

 $\begin{cases} \dot{x} = -x + \lambda \\ \dot{\lambda} = -\gamma |x|^3 \end{cases}$

 $\Omega_a = \{(x,\lambda) | x \in R, \lambda \in R, \qquad p\left(\frac{p}{2p^2 + \gamma}\right)^2 \ge \lambda \ge px^2, \qquad p \in R_{\ge 0}\}$

Will this help with issues?

$$\begin{cases} \dot{x} = -x + \lambda \\ \dot{\lambda} = -\gamma |x|^3 \end{cases} \qquad \begin{cases} \dot{x} = -x^2 + \lambda \\ \dot{\lambda} = -\gamma |x|^3 \end{cases} \qquad \begin{cases} \dot{x} = -x^3 + \lambda \\ \dot{\lambda} = -\gamma |x|^3 \end{cases}$$

Are these estimates tight?

$$\begin{cases} \dot{x}_1 = -\tau x_1 + c_1 x_2 \\ \dot{x}_2 = -c_2 |x_1| \end{cases}, \quad \tau, c_1, c_2 > 0 \qquad \qquad \psi = p \sqrt{V}, p > 0, \qquad V = x_1^2 \end{cases}$$

 $c_2 \le p(\tau - p c_1)$ is the resulting condition

 $p = \tau/(2c_1)$

Are these estimates tight?

A sister system

$$\begin{cases} \dot{x}_1 = -\tau x_1 + c_1 x_2 \\ \dot{x}_2 = -c_2 x_1 \end{cases}, \quad \tau, c_1, c_2 > 0$$

$$(-\tau - s)(-s) + c_1c_2 = 0$$

 $s^2 + \tau s + c_1c_2 = 0$

$$\tau^2 - 4c_1c_2 < 0$$
 implies complex roots $c_2 \le \frac{\tau^2}{4c_1}$

A phase synchronization example

A phase synchronization example

What's next?

- Convergence and convergence rates ?
- Analogue of the first Lyapunov method ?