The second Lyapunov method for unstable attractors

I. Tyukin

A.N. Gorban, E. Steur, H. Nijmeijer

Preliminaries. Invariance and attractivity

$$
\dot{x}=f(x), x \in R^{n} \quad f(\cdot) \text { is locally Lipschitz in } D \text { (open in } R^{n} \text {) }
$$

A set $S \subset D$ is forward (positively) invariant if for every $x_{0} \in S$ $x\left(\cdot, x_{0}\right)$ is defined on $[0, \infty)$ and $x\left(t, x_{0}\right) \in S$ for all $t>0$

A set $S \subset D$ is invariant if for every $x_{0} \in S \quad x\left(\cdot, x_{0}\right)$ is defined on $(-\infty, \infty)$ and $x\left(t, x_{0}\right) \in S$ for all t.

A closed invariant set is weakly attracting if there exists a set V of strictly positive measure such that for all $x_{0} \in V$ the solution $x\left(., x_{0}\right)$ is defined on $[0, \infty)$ and

$$
\lim _{t \rightarrow \infty} \operatorname{dist}\left(S, x\left(t, x_{0}\right)\right)=0
$$

Preliminaries. Attractivity and stability

The set $S \subset D$ (closed, invariant) is attracting if

1) it is weakly attracting
2) V is a neighbourhood of S and
3) V is forward-invariant

The set is stable in the sense of Lyapunov if for any neighbourhood V of S there is a forward invariant neighbourhood $W \subset D$ of S such that $W \subset V$

Preliminaries. Motivation

This nested structure offers a remarkably convenient tool: the second Lyapunov method

Tangential condition:

Unstable attractors?

- Decision-making
- Optimization
- Adaptive Control

- Aircraft dynamics, generators, models of species

Dynamical Models of Decision-Making in Neural Systems

M. Rabinovich et al. 2008, PLOS Comp. Biology

A phase synchronization example

$$
\begin{aligned}
& \dot{x}_{a}=1+x_{a}^{2}+\epsilon\left(\delta\left(t-t_{b}\right)+\delta\left(t-t_{c}\right)\right) \\
& \dot{x}_{b}=1+x_{b}^{2}+\epsilon\left(\delta\left(t-t_{a}\right)\right) \\
& \dot{x}_{c}=1+x_{c}^{2}+\epsilon_{1}\left(x_{a}-x_{c}\right) \\
& \dot{\phi}_{a}=\epsilon / \pi\left(\sin ^{2}\left(\phi_{b}-\phi_{a}\right)+\sin ^{2}\left(\phi_{c}-\phi_{a}\right)\right) \\
& \dot{\phi}_{b}=\epsilon / \pi \sin ^{2}\left(\phi_{a}-\phi_{b}\right) \\
& \dot{\phi}_{c}=\epsilon_{1} / 2 \sin \left(2\left(\phi_{a}-\phi_{c}\right)\right)
\end{aligned}
$$

$$
\lambda=\phi_{b}-\phi_{a}, x=\phi_{a}-\phi_{c}
$$

A phase synchronization example

$$
\begin{aligned}
& \dot{\phi}_{a}=\epsilon / \pi\left(\sin ^{2}\left(\phi_{b}-\phi_{a}\right)+\sin ^{2}\left(\phi_{c}-\phi_{a}\right)\right) \\
& \dot{\phi}_{b}=\epsilon / \pi \sin ^{2}\left(\phi_{a}-\phi_{b}\right) \\
& \dot{\phi}_{c}=\epsilon_{1} / 2 \sin \left(2\left(\phi_{a}-\phi_{c}\right)\right) \quad \lambda=\phi_{b}-\phi_{a}, x=\phi_{a}-\phi_{c}
\end{aligned}
$$

$$
\left\{\begin{array}{c}
\dot{x}=\frac{\varepsilon}{\pi}\left[\sin ^{2}(\lambda)+\sin ^{2}(x)\right]-\frac{\varepsilon_{1}}{2} \sin (2 x) \\
\dot{\lambda}=-\frac{\varepsilon}{\pi} \sin ^{2}(x)
\end{array}\right.
$$

Preliminaries. Issues

Is origin an attractor?

$$
\begin{array}{lll}
\dot{x}=-x+\lambda & \dot{x}=-x^{2}+\lambda & \dot{x}=-x^{3}+\lambda \\
\dot{\lambda}=-\gamma|x|^{3} & \dot{\lambda}=-\gamma|x|^{3} & \dot{\lambda}=-\gamma|x|^{3}
\end{array}
$$

Problem statement

$$
\left\{\begin{array}{l}
\dot{x}=f(x, \lambda, t) \tag{1}\\
\dot{\lambda}=g(x, \lambda, t)
\end{array}\right.
$$

where

$$
\begin{aligned}
& f: R^{n} \times R \times R \rightarrow R^{n}, \\
& g: R^{n} \times R \times R \rightarrow R
\end{aligned}
$$

1) continuous and locally Lipschitz uniformly in t
2) g is not allowed to change its sign (e.g. non-positive)
3) $(0,0)$ is an equilibrium and 0 is a weak attractor of $\dot{x}=f(x, 0, t)$
4) there is a $p>0$ and a set $\omega(p)$ which is forward invariant for

$$
\begin{equation*}
\dot{x}=f(x, \lambda, t) \tag{2}
\end{equation*}
$$

for all $\lambda \in[0, p]$ (for simplicity the set $\omega(p)$ can be set to R^{n})

Assumptions

Let D be an open subset of $R^{n}, \Lambda=\left[c_{1}, c_{2}\right], c_{1} \leq 0, c_{2}>0$ be an interval, and the closure of D contains the origin. Denote $D_{\Omega}=\bar{D} \times \Lambda \times R$

Assumption 1. There is a continuous function $V: R^{n} \rightarrow R$ that is differentiable everywhere except for the origin, and five functions of one variable, $\underline{\alpha}, \bar{\alpha} \in K_{\infty}$, $\alpha, \beta: R_{\geq 0} \rightarrow R, \alpha, \beta \in C^{0}([0, \infty)), \alpha(0)=0, \varphi \in K_{0}$ such that for every $(x, \lambda, t) \in(\bar{D} \backslash\{0\}) \times \Lambda \times R$ the following holds:

$$
\underline{\alpha}(\|x\|) \leq V(x) \leq \bar{\alpha}(\|x\|), \quad \frac{\partial V}{\partial x} f(x, \lambda, t) \leq \alpha(V(x))+\beta(V(x)) \varphi(|\lambda|)
$$

Assumption 2. There exist functions $\delta, \xi \in K_{0}$ such that the following holds for all $(x, \lambda, t) \in D_{\Omega}$:

$$
-\xi(|\lambda|)-\delta(\|x\|) \leq g(x, \lambda, t) \leq 0
$$

Results

Lemma 1 (The second Lyapunov method for (1))
Let Assumptions 1,2 hold for (1). Suppose that
(C1) there exists a function $\psi \in K \cap C^{1}(0, \infty)$ and a number a such that for all $V \in(0, a]$

$$
\begin{equation*}
\frac{\partial \psi(V)}{\partial V}(\alpha(V)+\beta(V) \varphi(\psi(V)))+\delta\left(\underline{\alpha}^{-1}(V)\right)+\xi(\psi(V)) \leq 0 \tag{3}
\end{equation*}
$$

(C2) the set $\omega(\psi(a))$ exists and either \bar{D} contains $\omega(\psi(a))$ or the ball $\left\{x \mid x \in R^{n}\right.$, $\left.\|x\| \leq \underline{\alpha}^{-1}(x)\right\}$ is in D
(C3) the set $\Omega_{a} \backslash\{(0,0)\}$ where
(4) $\Omega_{a}=\left\{(x, \lambda) \mid x \in \omega(\psi(a)), \lambda \in R_{\geq 0}, \psi(a) \geq \lambda \geq \psi(V(x)), V(x) \in(0, a]\right\}$
is in the interior of $\bar{D} \times \Lambda$.
Then Ω_{a} is forward invariant with respect to the dynamics of (1)

Results. Sketch

$$
\Omega_{a}=\left\{(x, \lambda) \mid x \in \omega(\psi(a)), \lambda \in R_{\geq 0}, \quad \psi(a) \geq \lambda \geq \psi(V(x)), \quad V(x) \in(0, a]\right\}
$$

a

b

$$
\frac{\partial \psi(V)}{\partial V}(\alpha(V)+\beta(V) \varphi(\psi(V)))+\delta\left(\underline{\alpha}^{-1}(V)\right)+\xi(\psi(V)) \leq 0
$$

Results.

Corollary (The second Lyapunov method for (1))
Let $D=R^{n}, \Lambda=R$ and Assumptions 1,2 hold. Suppose that there exists a function $\psi \in K \cap C^{1}(0, \infty)$ and a number a such that for all $V \in(0, a](3)$ holds:

$$
\frac{\partial \psi(V)}{\partial V}(\alpha(V)+\beta(V) \varphi(\psi(V)))+\delta\left(\underline{\alpha}^{-1}(V)\right)+\xi(\psi(V)) \leq 0
$$

Then the set

$$
\Omega_{a}=\left\{(x, \lambda) \mid x \in R^{n}, \lambda \in R_{\geq 0}, \psi(a) \geq \lambda \geq \psi(V(x)), V(x) \in(0, a]\right\}
$$

is forward invariant with respect to the dynamics of (1)

Will this help with issues?

$$
\begin{aligned}
& \text { Will this help with issues? } \\
& \left.\left\{\begin{array}{l}
\dot{x}=-x+\lambda \\
\dot{\lambda}=-\gamma|x|^{3} \\
V(x)=x^{2}, \alpha(V)=-2 V, \beta(V)=2 \sqrt{V} \\
\psi(V)=p V, p>0, \varphi(|\lambda|)=|\lambda|, \xi(\cdot)=0, \delta(|x|)=\gamma|x|^{3} \\
\qquad \frac{\partial \psi}{\partial V}(\alpha(V)+\beta(V) \varphi(|\lambda|))+\delta(\sqrt{V}) \leq 0 \\
\Omega_{a}=\left\{(x, \lambda) \mid x \in R, \lambda \in R, \quad p\left(\frac{2 p}{2 p^{2}+\gamma}\right)^{2} \geq \lambda \geq p x^{2},\right.
\end{array}\right]=\left(2 p^{2}+\gamma\right) \sqrt{V}\right) V \leq 0
\end{aligned}
$$

Will this help with issues?

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{x}=-x+\lambda \\
\dot{\lambda}=-\gamma|x|^{3}
\end{array}\right. \\
& \Omega_{a}=\left\{(x, \lambda) \mid x \in R, \lambda \in R, \quad p\left(\frac{p}{2 p^{2}+\gamma}\right)^{2} \geq \lambda \geq p x^{2}, \quad p \in R_{\geq 0}\right\}
\end{aligned}
$$

Will this help with issues?

$$
\left\{\begin{array}{l}
\dot{x}=-x+\lambda \\
\dot{\lambda}=-\gamma|x|^{3}
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
\dot{x}=-x^{2}+\lambda \\
\dot{\lambda}=-\gamma|x|^{3}
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
\dot{x}=-x^{3}+\lambda \\
\dot{\lambda}=-\gamma|x|^{3}
\end{array}\right.
$$

Sets corresponding to solutions that do not converge to the origin can be specified in the same manner (please see the ms on the table)

Are these estimates tight?

$$
\left\{\begin{array}{c}
\dot{x}_{1}=-\tau x_{1}+c_{1} x_{2} \\
\dot{x}_{2}=-c_{2}\left|x_{1}\right|
\end{array}, \quad \tau, c_{1}, c_{2}>0 \quad \psi=p \sqrt{V}, p>0, \quad V=x_{1}^{2}\right.
$$

$$
c_{2} \leq p\left(\tau-p c_{1}\right) \quad \text { is the resulting condition }
$$

$$
p=\tau /\left(2 c_{1}\right) \quad \text { maximizes the rhs } \rightarrow \quad c_{2} \leq \frac{\tau^{2}}{4 c_{1}}
$$

Are these estimates tight?

A sister system

$$
\left\{\begin{array}{cl}
\dot{x}_{1}=-\tau x_{1}+c_{1} x_{2} \\
\dot{x}_{2}=-c_{2} x_{1}
\end{array}, \tau, c_{1}, c_{2}>0 \quad(-\tau-s)(-s)+c_{1} \mathrm{c}_{2}=0\right\}
$$

$$
\tau^{2}-4 c_{1} c_{2}<0 \quad \text { implies complex roots } \quad c_{2} \leq \frac{\tau^{2}}{4 c_{1}}
$$

A phase synchronization example

$$
\begin{aligned}
& \dot{x}_{a}=1+x_{a}^{2}+\epsilon\left(\delta\left(t-t_{b}\right)+\delta\left(t-t_{c}\right)\right) \\
& \dot{x}_{b}=1+x_{b}^{2}+\epsilon\left(\delta\left(t-t_{a}\right)\right) \\
& \dot{x}_{c}=1+x_{c}^{2}+\epsilon_{1}\left(x_{a}-x_{c}\right) \\
& \dot{\phi}_{a}=\epsilon / \pi\left(\sin ^{2}\left(\phi_{b}-\phi_{a}\right)+\sin ^{2}\left(\phi_{c}-\phi_{a}\right)\right) \\
& \dot{\phi}_{b}=\epsilon / \pi \sin ^{2}\left(\phi_{a}-\phi_{b}\right) \\
& \dot{\phi}_{c}=\epsilon_{1} / 2 \sin \left(2\left(\phi_{a}-\phi_{c}\right)\right)
\end{aligned}
$$

$\lambda=\phi_{b}-\phi_{a}, x=\phi_{a}-\phi_{c}$

A phase synchronization example

What's next?

- Convergence and convergence rates ?
- Analogue of the first Lyapunov method ?

