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Introduction

I Reduction across disciplines – variety of both applications and types
of reduction.

I Applications: Complex systems and PDEs naturally give
high-dimensional spaces.

I Types of reduction: Data reduction, Dynamical systems, Control
systems.

I Key question: what structure are you trying to preserve?
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Reduction of Attractors

I Smooth autonomous dynamical system, usually given in the form of
a differential equation.

I Static parameters – constant w.r.t. time evolution, but may take
different values in different instances of the system.

I Family of low-dimensional attractors.

I Challenge – Variation in attractors, e.g. bifurcations.

I Observation – The underlying vector field is a smooth function of
both state and parameter.



Conventional Galerkin Approach

I Start with the differential equation:

ẋ = f (x)

I Apply projection, x̂ = Px :

˙̂x = P ◦ f (x)

I Use a choice of inverse to identify the low-dimensional states with
high-dimensional states:

˙̂x = P ◦ f ◦ R(x̂) = f̂ (x̂)

I Problem 1 – To evaluate f̂ in general requires evaluation of the
original vector field f .

I Problem 2 – R will be approximated – the error in this
approximation directly affects the quality of the reduced dynamics.



Conventional Galerkin Approach

I If the inverse approximation R is required to be linear, the only way
to improve the reduced model is to increase the dimension of the
reduced space.

I This can result a higher-dimensional reduced model than is
geometrically necessary.

I Nonlinear Galerkin methods attempt to produce a nonlinear inverse
approximation that enables lower-dimensional reduced models.

I With parameters, even if the projection is parameter-independent,
the inverse is still parameter-dependent.



Approach of Broomhead and Kirby

I Use the projection of the original model to determine requirements
of the reduced vector field.

I Use optimization to find the best vector field that satisfies these
requirements (from a space of candidates).

I Preserve the vector field along the attractor.

I Preserve (some of the) derivatives of the vector field on the
attractor.

I By preserving the relevant parts of the vector field, the flow
produces the same attractor in the low-dimensional space.

I This approach separates the concern of finding a good projection
(the geometry of the attractor) from the concern of reproducing the
dynamics (the vector field and its derivatives).



Formulation

I State space X is a smooth manifold.

I Parameter space U, which we can think of as the product of
intervals, [a1, b1]× · · · × [ap, bp].

I A smooth family of smooth vector fields, V : U → X(X ).

Look for relationship between the given original (X ,U,V ) and the chosen
reduced candidate family (X̂ , Û, V̂ ).

X
ϕ−−−−−−→ X̂

U
Q−−−−−−→ Û

V

y yV̂
X(X ) X(X̂ )



Reduced Family of Vector Fields

Two classes of vector fields

I Generic family, e.g. constructed from radial basis functions:

Vx = Lx +
∑
i

wiφ(‖x − ci‖).

I Can be used with a wide variety of examples.
I No knowledge of the dynamics required.

I Specialised family – tailored to the example system.
I May require prior knowledge of the dynamics.



Strategy

1. Embed the state space X into an ambient Rn.

2. Find an orthogonal projection that preserves the attractors
(secant-based projection). The subspace is the reduced state space
X̂ = Rd .

3. Apply the projection to the original vector fields and their derivatives
on their respective attractors.

4. Consider a radial basis family of vector fields on Rd .

5. Use optimization to find the affine parameter map U → Û that best
reproduces these aspects of the vector fields.



Secant-Based Projection

I Motivated by a proof of the Whitney Embedding theorem.

I For each pair of points on the manifold, the secant is the unique
straight line through the pair.

I An orthogonal projection that preserves all the secants smoothly
embeds the manifold into the subspace.

I Write a cost function and perform optimization to find an
orthogonal projection P that preserves all the secants:

F(P) =
1

|K|
∑
k∈K

‖Pk‖−1

where each k is a unit vector describing a secant.

I This is a cost function on the Grassmann manifold,
F : Grd(Rn)→ [1,∞].

I The Grassmann manifold has closed form expressions for its
geodesics and parallel translation along geodesics!



Example: Brusselator

The Brusselator is a reaction-diffusion equation describing an
autocatalytic chemical reaction:

∂tu = 1 + u2v − (λ+ 1)v +∇2u

∂tv = λu − u2v +∇2v .

I Parameter region λ ∈ [2.1, 3.9] – limit cycles.

I 2D physical space with a 32× 32 discretization and periodic
boundaries. State space is R2048.

I Look for projection from 2048 to 2 dimensions.

I Use 30 radial basis functions of type φ(r) = r2 log r .



Brusselator – Original
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Brusselator – Reduced

-200

-150

-100

-50

 0

 50

 50  100  150  200



Brusselator – λ = 2.1
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Brusselator – λ = 3.9
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Brusselator – Errors in the period
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Brusselator – Error in the time series
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Example: Rössler

The Rössler system is a standard example in dynamical systems. It has a
3D state space and features period-doubling bifurcations and chaos.

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c)

I Parameter region a = b = 0.1 and c ∈ [4, 8.8] – period-doubling
bifurcations.

I Use 40 radial basis functions of type φ(r) = r3.



Rössler
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Rössler – Original



Rössler – Reproduction



Bonus: Preserving Symmetry in the Reduced Model

I G -equivariance: f (gx) = gf (x) ∀g ∈ G

I For an orthogonal group action, can preserve equivariance by
orthogonally projecting onto an invariant subspace of the group
action.

I Modify the radial basis functions to produce a manifestly equivariant
vector field. The RBF

ψ(x) = wφ(‖x − c‖)

becomes
ψ(x) =

∑
g∈G

gwφ(‖x − gc‖)

i.e. replace both the weight w and centre c with their respective
orbits under the group action and sum contributions.

I Can extend to continuous groups by integrating (Lie groups have a
unique volume form up to a scale factor). But these intergrals are
hard even for SO(2).



Example: FitzHugh-Nagumo

The FitzHugh-Nagumo model is:

∂tu = λu − u3 − 3v +∇2u

∂tv =
1

3
(u − v +∇2v).

It has a symmetry: Z2-equivariant for the action (u, v) 7→ (−u,−v).

I Parameter region λ ∈ [0.5, 4] – limit cycles.

I 2D physical space with a 32× 32 discretization and periodic
boundaries. State space is R2048.

I Look for projection from 2048 to 2 dimensions.

I Use 30 Z2-equivariant radial basis functions of type φ(r) = r2 log r .



FitzHugh-Nagumo – Original
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FitzHugh-Nagumo – Reduced
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FitzHugh-Nagumo – Equivariant vs. Standard RBFs

I For the FitzHugh-Nagumo example, we observe that N equivariant
RBFs are approximately as good as 2N standard RBFs:

# RBFs Std RBF Equi RBF
10 0.421851
15 0.0447792
20 0.543544 0.0101049
30 0.207695 0.00159639
40 0.0403139
60 0.00329719

Max percentage error in the period over the parameter region.



Thanks!

I A library of code is available on GitHub:
https://github.com/cwzx/DRDSP

I C. Welshman and J. M. Brooke, Dimensionality Reduction of
Dynamical Systems with Parameters: A Geometric Approach,
SIAM Journal on Applied Dynamical Systems, 2014, 13(1):493–517.
dx.doi.org/10.1137/130913675

I My thesis at Manchester: eprints.ma.man.ac.uk/2134/

https://github.com/cwzx/DRDSP
dx.doi.org/10.1137/130913675
eprints.ma.man.ac.uk/2134/

