Reducing a family of attractors: parameter dependence in the reduced model

Chris Welshman
School of Mathematics
University of Manchester

August 21, 2014

Introduction

- Reduction across disciplines - variety of both applications and types of reduction.
- Applications: Complex systems and PDEs naturally give high-dimensional spaces.
- Types of reduction: Data reduction, Dynamical systems, Control systems.
- Key question: what structure are you trying to preserve?

Torus Attractor

Reduction of Attractors

- Smooth autonomous dynamical system, usually given in the form of a differential equation.
- Static parameters - constant w.r.t. time evolution, but may take different values in different instances of the system.
- Family of low-dimensional attractors.
- Challenge - Variation in attractors, e.g. bifurcations.
- Observation - The underlying vector field is a smooth function of both state and parameter.

Conventional Galerkin Approach

- Start with the differential equation:

$$
\dot{x}=f(x)
$$

- Apply projection, $\hat{x}=P x$:

$$
\dot{\hat{x}}=P \circ f(x)
$$

- Use a choice of inverse to identify the low-dimensional states with high-dimensional states:

$$
\dot{\hat{x}}=P \circ f \circ R(\hat{x})=\hat{f}(\hat{x})
$$

- Problem 1 - To evaluate \hat{f} in general requires evaluation of the original vector field f.
- Problem $2-R$ will be approximated - the error in this approximation directly affects the quality of the reduced dynamics.

Conventional Galerkin Approach

- If the inverse approximation R is required to be linear, the only way to improve the reduced model is to increase the dimension of the reduced space.
- This can result a higher-dimensional reduced model than is geometrically necessary.
- Nonlinear Galerkin methods attempt to produce a nonlinear inverse approximation that enables lower-dimensional reduced models.
- With parameters, even if the projection is parameter-independent, the inverse is still parameter-dependent.

Approach of Broomhead and Kirby

- Use the projection of the original model to determine requirements of the reduced vector field.
- Use optimization to find the best vector field that satisfies these requirements (from a space of candidates).
- Preserve the vector field along the attractor.
- Preserve (some of the) derivatives of the vector field on the attractor.
- By preserving the relevant parts of the vector field, the flow produces the same attractor in the low-dimensional space.
- This approach separates the concern of finding a good projection (the geometry of the attractor) from the concern of reproducing the dynamics (the vector field and its derivatives).

Formulation

- State space X is a smooth manifold.
- Parameter space U, which we can think of as the product of intervals, $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{p}, b_{p}\right]$.
- A smooth family of smooth vector fields, $V: U \rightarrow \mathfrak{X}(X)$.

Look for relationship between the given original (X, U, V) and the chosen reduced candidate family $(\hat{X}, \hat{U}, \hat{V})$.

Reduced Family of Vector Fields

Two classes of vector fields

- Generic family, e.g. constructed from radial basis functions:

$$
V_{x}=L x+\sum_{i} w_{i} \phi\left(\left\|x-c_{i}\right\|\right) .
$$

- Can be used with a wide variety of examples.
- No knowledge of the dynamics required.
- Specialised family - tailored to the example system.
- May require prior knowledge of the dynamics.

Strategy

1. Embed the state space X into an ambient \mathbb{R}^{n}.
2. Find an orthogonal projection that preserves the attractors (secant-based projection). The subspace is the reduced state space $\hat{X}=\mathbb{R}^{d}$.
3. Apply the projection to the original vector fields and their derivatives on their respective attractors.
4. Consider a radial basis family of vector fields on \mathbb{R}^{d}.
5. Use optimization to find the affine parameter map $U \rightarrow \hat{U}$ that best reproduces these aspects of the vector fields.

Secant-Based Projection

- Motivated by a proof of the Whitney Embedding theorem.
- For each pair of points on the manifold, the secant is the unique straight line through the pair.
- An orthogonal projection that preserves all the secants smoothly embeds the manifold into the subspace.
- Write a cost function and perform optimization to find an orthogonal projection P that preserves all the secants:

$$
\mathcal{F}(P)=\frac{1}{|\mathcal{K}|} \sum_{k \in \mathcal{K}}\|P k\|^{-1}
$$

where each k is a unit vector describing a secant.

- This is a cost function on the Grassmann manifold, $\mathcal{F}: \operatorname{Gr}_{d}\left(\mathbb{R}^{n}\right) \rightarrow[1, \infty]$.
- The Grassmann manifold has closed form expressions for its geodesics and parallel translation along geodesics!

Example: Brusselator

The Brusselator is a reaction-diffusion equation describing an autocatalytic chemical reaction:

$$
\begin{aligned}
& \partial_{t} u=1+u^{2} v-(\lambda+1) v+\nabla^{2} u \\
& \partial_{t} v=\lambda u-u^{2} v+\nabla^{2} v .
\end{aligned}
$$

- Parameter region $\lambda \in[2.1,3.9]$ - limit cycles.
- 2D physical space with a 32×32 discretization and periodic boundaries. State space is \mathbb{R}^{2048}.
- Look for projection from 2048 to 2 dimensions.
- Use 30 radial basis functions of type $\phi(r)=r^{2} \log r$.

Brusselator - Original

Brusselator - Reduced

Brusselator $-\lambda=2.1$

Brusselator $-\lambda=3.9$

Brusselator - Errors in the period

Brusselator - Error in the time series

Example: Rössler

The Rössler system is a standard example in dynamical systems. It has a 3D state space and features period-doubling bifurcations and chaos.

$$
\begin{aligned}
& \dot{x}=-y-z \\
& \dot{y}=x+a y \\
& \dot{z}=b+z(x-c)
\end{aligned}
$$

- Parameter region $a=b=0.1$ and $c \in[4,8.8]$ - period-doubling bifurcations.
- Use 40 radial basis functions of type $\phi(r)=r^{3}$.

Rössler

Rössler - Original

Rössler - Reproduction

Bonus: Preserving Symmetry in the Reduced Model

- G-equivariance: $f(g x)=g f(x) \forall g \in G$
- For an orthogonal group action, can preserve equivariance by orthogonally projecting onto an invariant subspace of the group action.
- Modify the radial basis functions to produce a manifestly equivariant vector field. The RBF

$$
\psi(x)=w \phi(\|x-c\|)
$$

becomes

$$
\psi(x)=\sum_{g \in G} g w \phi(\|x-g c\|)
$$

i.e. replace both the weight w and centre c with their respective orbits under the group action and sum contributions.

- Can extend to continuous groups by integrating (Lie groups have a unique volume form up to a scale factor). But these intergrals are hard even for $\mathrm{SO}(2)$.

Example: FitzHugh-Nagumo

The FitzHugh-Nagumo model is:

$$
\begin{aligned}
& \partial_{t} u=\lambda u-u^{3}-3 v+\nabla^{2} u \\
& \partial_{t} v=\frac{1}{3}\left(u-v+\nabla^{2} v\right) .
\end{aligned}
$$

It has a symmetry: \mathbb{Z}_{2}-equivariant for the action $(u, v) \mapsto(-u,-v)$.

- Parameter region $\lambda \in[0.5,4]$ - limit cycles.
- 2D physical space with a 32×32 discretization and periodic boundaries. State space is \mathbb{R}^{2048}.
- Look for projection from 2048 to 2 dimensions.
- Use $30 \mathbb{Z}_{2}$-equivariant radial basis functions of type $\phi(r)=r^{2} \log r$.

FitzHugh-Nagumo - Original

FitzHugh-Nagumo - Reduced

FitzHugh-Nagumo - Equivariant vs. Standard RBFs

- For the FitzHugh-Nagumo example, we observe that N equivariant RBFs are approximately as good as 2 N standard RBFs:

\# RBFs	Std RBF	Equi RBF
10		0.421851
15		0.0447792
20	0.543544	0.0101049
30	0.207695	0.00159639
40	0.0403139	
60	0.00329719	

Max percentage error in the period over the parameter region.

Thanks!

- A library of code is available on GitHub: https://github.com/cwzx/DRDSP
- C. Welshman and J. M. Brooke, Dimensionality Reduction of Dynamical Systems with Parameters: A Geometric Approach, SIAM Journal on Applied Dynamical Systems, 2014, 13(1):493-517. dx.doi.org/10.1137/130913675
- My thesis at Manchester: eprints.ma.man.ac.uk/2134/

