Reducing a family of attractors: parameter dependence in the reduced model

Chris Welshman

School of Mathematics
University of Manchester

August 21, 2014
Introduction

- Reduction across disciplines – variety of both applications and types of reduction.
- Applications: Complex systems and PDEs naturally give high-dimensional spaces.
- Types of reduction: Data reduction, Dynamical systems, Control systems.
- Key question: what structure are you trying to preserve?
Torus Attractor
Reduction of Attractors

- Smooth autonomous dynamical system, usually given in the form of a differential equation.
- Static parameters – constant w.r.t. time evolution, but may take different values in different instances of the system.
- Family of low-dimensional attractors.
- Challenge – Variation in attractors, e.g. bifurcations.
- Observation – The underlying vector field is a smooth function of both state and parameter.
Conventional Galerkin Approach

- Start with the differential equation:
 \[\dot{x} = f(x) \]

- Apply projection, \(\hat{x} = Px \):
 \[\dot{\hat{x}} = P \circ f(x) \]

- Use a choice of inverse to identify the low-dimensional states with high-dimensional states:
 \[\dot{\hat{x}} = P \circ f \circ R(\hat{x}) = \hat{f}(\hat{x}) \]

- Problem 1 – To evaluate \(\hat{f} \) in general requires evaluation of the original vector field \(f \).

- Problem 2 – \(R \) will be approximated – the error in this approximation directly affects the quality of the reduced dynamics.
If the inverse approximation \(R \) is required to be linear, the only way to improve the reduced model is to increase the dimension of the reduced space.

This can result a higher-dimensional reduced model than is geometrically necessary.

Nonlinear Galerkin methods attempt to produce a nonlinear inverse approximation that enables lower-dimensional reduced models.

With parameters, even if the projection is parameter-independent, the inverse is still parameter-dependent.
Approach of Broomhead and Kirby

- Use the projection of the original model to determine requirements of the reduced vector field.
- Use optimization to find the best vector field that satisfies these requirements (from a space of candidates).
- Preserve the vector field along the attractor.
- Preserve (some of the) derivatives of the vector field on the attractor.
- By preserving the relevant parts of the vector field, the flow produces the same attractor in the low-dimensional space.
- This approach separates the concern of finding a good projection (the geometry of the attractor) from the concern of reproducing the dynamics (the vector field and its derivatives).
Formulation

- State space X is a smooth manifold.
- Parameter space U, which we can think of as the product of intervals, $[a_1, b_1] \times \cdots \times [a_p, b_p]$.
- A smooth family of smooth vector fields, $V : U \to \mathcal{X}(X)$.

Look for relationship between the given original (X, U, V) and the chosen reduced candidate family $(\hat{X}, \hat{U}, \hat{V})$.

\[
\begin{array}{ccc}
X & \xrightarrow{\varphi} & \hat{X} \\
U & \xrightarrow{Q} & \hat{U} \\
\mathcal{X}(X) & \xrightarrow{\mathcal{X}} & \mathcal{X}(\hat{X})
\end{array}
\]
Two classes of vector fields

- **Generic family**, e.g. constructed from radial basis functions:

\[V_x = Lx + \sum_i w_i \phi(\|x - c_i\|) \]

- Can be used with a wide variety of examples.
- No knowledge of the dynamics required.

- **Specialised family** – tailored to the example system.
 - May require prior knowledge of the dynamics.
1. Embed the state space X into an ambient \mathbb{R}^n.

2. Find an orthogonal projection that preserves the attractors (secant-based projection). The subspace is the reduced state space $\hat{X} = \mathbb{R}^d$.

3. Apply the projection to the original vector fields and their derivatives on their respective attractors.

4. Consider a radial basis family of vector fields on \mathbb{R}^d.

5. Use optimization to find the affine parameter map $U \rightarrow \hat{U}$ that best reproduces these aspects of the vector fields.
Secant-Based Projection

- Motivated by a proof of the Whitney Embedding theorem.
- For each pair of points on the manifold, the secant is the unique straight line through the pair.
- An orthogonal projection that preserves all the secants smoothly embeds the manifold into the subspace.
- Write a cost function and perform optimization to find an orthogonal projection P that preserves all the secants:

$$\mathcal{F}(P) = \frac{1}{|K|} \sum_{k \in K} \|Pk\|^{-1}$$

where each k is a unit vector describing a secant.
- This is a cost function on the Grassmann manifold, $\mathcal{F} : Gr_d(\mathbb{R}^n) \to [1, \infty]$.
- The Grassmann manifold has closed form expressions for its geodesics and parallel translation along geodesics!
The Brusselator is a reaction-diffusion equation describing an autocatalytic chemical reaction:

\[
\begin{align*}
\partial_t u &= 1 + u^2 v - (\lambda + 1) v + \nabla^2 u \\
\partial_t v &= \lambda u - u^2 v + \nabla^2 v.
\end{align*}
\]

- Parameter region \(\lambda \in [2.1, 3.9] \) – limit cycles.
- 2D physical space with a 32 \(\times \) 32 discretization and periodic boundaries. State space is \(\mathbb{R}^{2048} \).
- Look for projection from 2048 to 2 dimensions.
- Use 30 radial basis functions of type \(\phi(r) = r^2 \log r \).
Brusselator – Original
Brusselator – Reduced
Brusselator – $\lambda = 2.1$
Brusselator – $\lambda = 3.9$
Brusselator – Errors in the period

![Graph showing % Error vs Parameter](image-url)
Brusselator – Error in the time series

Parameter vs. RMS

- Parameter values: 2.1, 2.4, 2.7, 3, 3.3, 3.6, 3.9
- RMS values: 0, 0.001, 0.002, 0.003, 0.004

Graph shows fluctuations in RMS error with respect to parameter values.
The Rössler system is a standard example in dynamical systems. It has a 3D state space and features period-doubling bifurcations and chaos.

\[
\begin{align*}
\dot{x} &= -y - z \\
\dot{y} &= x + ay \\
\dot{z} &= b + z(x - c)
\end{align*}
\]

- Parameter region \(a = b = 0.1 \) and \(c \in [4, 8.8] \) – period-doubling bifurcations.
- Use 40 radial basis functions of type \(\phi(r) = r^3 \).
Rössler
G-equivariance: \(f(gx) = gf(x) \ \forall g \in G \)

For an orthogonal group action, can preserve equivariance by orthogonally projecting onto an invariant subspace of the group action.

Modify the radial basis functions to produce a manifestly equivariant vector field. The RBF

\[
\psi(x) = w\phi(\|x - c\|)
\]

becomes

\[
\psi(x) = \sum_{g \in G} gw\phi(\|x - gc\|)
\]

i.e. replace both the weight \(w \) and centre \(c \) with their respective orbits under the group action and sum contributions.

Can extend to continuous groups by integrating (Lie groups have a unique volume form up to a scale factor). But these intergrals are hard even for SO(2).
The FitzHugh-Nagumo model is:

\[
\begin{align*}
\partial_t u &= \lambda u - u^3 - 3v + \nabla^2 u \\
\partial_t v &= \frac{1}{3} (u - v + \nabla^2 v).
\end{align*}
\]

It has a symmetry: \(\mathbb{Z}_2 \)-equivariant for the action \((u, v) \mapsto (-u, -v)\).

- Parameter region \(\lambda \in [0.5, 4] \) – limit cycles.
- 2D physical space with a \(32 \times 32 \) discretization and periodic boundaries. State space is \(\mathbb{R}^{2048} \).
- Look for projection from 2048 to 2 dimensions.
- Use 30 \(\mathbb{Z}_2 \)-equivariant radial basis functions of type \(\phi(r) = r^2 \log r \).
FitzHugh-Nagumo – Reduced
For the FitzHugh-Nagumo example, we observe that N equivariant RBFs are approximately as good as $2N$ standard RBFs:

<table>
<thead>
<tr>
<th># RBFs</th>
<th>Std RBF</th>
<th>Equi RBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.421851</td>
<td>0.0447792</td>
</tr>
<tr>
<td>15</td>
<td>0.0447792</td>
<td>0.0101049</td>
</tr>
<tr>
<td>20</td>
<td>0.543544</td>
<td>0.0101049</td>
</tr>
<tr>
<td>30</td>
<td>0.207695</td>
<td>0.00159639</td>
</tr>
<tr>
<td>40</td>
<td>0.0403139</td>
<td>0.00159639</td>
</tr>
<tr>
<td>60</td>
<td>0.00329719</td>
<td></td>
</tr>
</tbody>
</table>

Max percentage error in the period over the parameter region.
Thanks!

- A library of code is available on GitHub: https://github.com/cwzx/DRDSP
- My thesis at Manchester: eprints.ma.man.ac.uk/2134/