Adaptive Resonance Theory

 *and Diffusion Maps for eringDonald C. Wunsch, Steven Damelin and Rui Xu Applied Computational Intelligence Laboratory Missouri University of Science and Technology

Mathematical Reviews \& Univ. Michigan

Acknowledgements

NSE

CEnTR for

Mary K Finley Endowment Intelligent Systems Center
 Center for Infrastructure Science \＆Engineering

D.C. Wunsch, "ART properties of interest in engineering applications," in Proc. IEEE / INNS International Joint Conference on Neural Networks, Atlanta, GA, 2009.
A. Gorban, B. Kégl, D.C. Wunsch, and A. Zinovyev, Eds.,_Principal Manifolds for Data Visualization and Dimension Reduction. Springer, 2007.
J. Sieffertt and D.C. Wunsch ${ }_{2}$ Unified Computational Intelligence for Complex Systems: Studies in Neural, Economic and Social Dynamics. Springer-Verlag, 2010,
R. Xu, S. Damelin, B. Nadler, and D.C. Wunsch II,
"Clustering of high-dimensional gene expression data with feature filtering methods and diffusion maps," Artificial Intelligence in Medicine, vol. 48, no. 2-3, pp. 91-98, 2010.
R. Xu, L. du Plessis, S. Damelin, M. Sears, and D.C. Wunsch, "Analysis of hyperspectral data with diffusion maps and fuzzy ART," in Proc. IEEE / INNS International Joint Conference on Neural Networks, Atlanta, GA, 2009.
R. Xu, S. Damelin, and D.C. Wunsch II, "Clustering of cancer tissues using diffusion maps and fuzzy ART with gene expression data," in Proc. IEEE / INNS
R. Xu and D.C. Wunsch, "BARTMAP: A viable structure for biclustering," Neural Networks, vol. 24, no. International Joint Conference on Neural Networks, 7, pp. 709-716, 2011.
data with diffusion maps and clustering with K-means and fuzzy ART," International Journal of Systems, Control and Communications, Vol. 3, No. 3, pp. 232251, 2011.
R. Xu and D.C. Wunsch, "Clustering algorithms in biomedical research: A review," IEEE Reviews in Biomedical Engineering, vol. 3, pp. 120-154, 2010.
R. Xu and D.C. Wunsch II, Clustering. IEEE Press / Wiley, 2009.
R. Xu, J. Xu, and D.C. Wunsch, "A Comparison Study of Validity Indices on Swarm Intelligence-Based Clustering," IEEE Trans. on Systems, Man and Cybernetics, part B, Vol. 42, No. 4, pp. 1243-1256, 2012.
. du Plessis, R. Xu, S. Damelin, M. Seai's, Wunsch II, "Reducing dimensionality of hyperspectra-

Hong Kong, China, June 2008, pp. 183-188.
R. Xu, S. Damelin, B. Nadler, and D.C. Wunsch II, "Clustering of high-dimensional gene expression data

Proc. of the IEEE International Conference on Biomedical Engineering and Informatics, Sanya, China, May 2008.
R. Xu, S. Damelin, and D.C. Wunsch, "Applications of diffusion maps in gene expression data-based cancer diagnosis analysis," in Proc. Of IEEE 29 ${ }^{\text {th }}$ Annual Engineering in Medicine and Biology Society International Conference, Aug. 22-26, 2007, pp. 46134616.

Charles Fefferman, Steven. B. Damelin and William Glover, BMO Theorems for ε distorted diffeomorphisms on RD and an application to comparing manifolds of speech and sound, Involve, a Journal of Mathematics 5-2 (2012), pp 159—172.

L du Plessis, S.B Damelin and M. Sears," Reducing the dimensionality of hyperpectral data using diffusion maps", Proceedings of the 2009 IEEE Geosciences and Remote Sensing
Symposium, Cape Town, pp 105-132.
R.R. Coifman, S. Lafon, "Diffusion maps", Applied and Computational Harmonic Analysis: Special issue on Diffusion Maps and Wavelets, Vol 21, July 2006, pp 530.

- Adaptive Resonance Theory: Learning switched on/off by resonant feedback loops in neural circuit

Input

- Diffusion maps: Kernel-based, from edgeweighted graphs to smooth manifolds, we use for dimensionality reduction

Diffusion Maps

Interpret eigenfunctions of Markov matrices as systems of coordinates on the original data set used in order to obtain efficient representation of data geometric descriptions (Coifman and Lafon, 2006)

- Given a set of d-dimensional data points, x_{1}, \ldots, x_{N}, Construct affinity matrix W based on the Gaussian Kernel

Calculate the degree of x_{i},

$$
w\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\exp \left(-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right)
$$

$$
d\left(\mathbf{x}_{i}\right)=\sum_{i=\mathbf{y}} w\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

Derive the Markov or transition matrix $P^{P_{j, ~}^{x, E}}=\left\{p\left(x_{i}, x_{j}\right)\right\}$,

$$
p\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\frac{w\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)}{d\left(\mathbf{x}_{i}\right)}
$$

Diffusion Maps

Given a set of d-dimensional data points, x_{1}, \ldots, x_{N}, Obtain eigenvalues and eigenvectors of \mathbf{P},

- Where larger t means fewer clusters Map data objects to the new L-dimensional ($L \ll d$) Euclidean space by using the eigenvectors as a new set of coordinates on the data set,

$$
\boldsymbol{\Psi}_{t}: \mathbf{x}_{i} \rightarrow\left(\lambda_{i}^{\prime} \boldsymbol{\varphi}_{i}\left(\mathbf{x}_{i}\right), \ldots, \lambda_{i}^{\prime} \boldsymbol{\varphi}_{L}\left(\mathbf{x}_{i}\right)\right)^{T}
$$

Calculate the diffusion distance

$$
D_{t}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\|p^{t}\left(\mathbf{x}_{i}, \cdot\right)-p^{t}\left(\mathbf{x}_{j}, \cdot\right)\right\|_{1 / \varphi_{j}}
$$

Adaptive Resonance Advantages in Engineering

- Scalability
- Speed
- Configurability
- Parallelization
- Results Interpretation
- New Metrics
- Distributed Representation
- Match-based vs. Error-based

Theory, Not Architecture

Input

Resonance mediates learning

Scalability

Ref: S. Mulder and D. Wunsch, "Million city traveling salesman problem solution by divide and conquer clustering with adaptive resonance neural networks," Neural Networks, Trod-16, pp. 827-832, 2003.

Divide and Conquer Algorithm
\#cities Tour Length Time

10002 58E+07 20003.61E+07 80007.14E+07 10000 20000 250000

- CONCORDE
10002.34E+07
20003.26E +07 80006.43E+07 10000 20000 250000
100000 10000000 2.495E+09
1.670
3.500
26.570
$7.20 \mathrm{E}+07$
$1.01 \mathrm{E}+08$
$3.58 \mathrm{E}+08$
. $15 \mathrm{E}+08$
9
7.94E+08 1468.165
$0.422 \quad 1040 \%$
$1.031 \quad 10.64 \%$ 8.328 10.97\% 7 97E+07
7.97E+07
$4.00 \mathrm{E}+08$
24.641
315.078
11.03\%
1.27%

Plus 25 M city results paper on IEEE Explore

Heterogeneous Vehicle Swarm Path

 Planning

Heterogeneous Vehicle Heuristic Performance R $t\left(e_{i}\right)=\frac{d\left(a_{e i}, b_{e i}\right)}{c_{g} v_{\max }}+c_{a}\left(\frac{c_{g} v_{\max }}{a}\right)\left(1-\cos \left(\theta_{a_{e t}, b_{e i}, c_{e i}}\right)\right)$

Non-Euclidean
TSP in real-time

Configurability
 - VIGILANCE ρ

- ARTI
- ARTMAP
- LAPART
- Fuzzy ART
- Ellipsoid ART
- GramART

Hardware -- GPU

Memristor

Results Interpretation -

 ART Templates as Chokepoint Estimators

Knowledge Representation / Template Interpretation via Category Theory

Healy, Olinger, Young, Caudell, Larson

Metrics, e.g., Ellipsoidal

 ARTMAP

cDNA Microarray Technology

Knowledge

NCI60 Cancer Identification

Classification rate comparison: EAM, ssEAM, PNN, ANN, LVQ1, and kNN

Gram-ART

Category selection

$$
T(j)=\frac{\left|x \cap w^{j}\right|}{\left\|w^{j}\right\|}
$$

w^{j} is wgts for category j x is input pattern

Resonance: weight update
$w_{i}^{j}=\frac{w_{i}^{j} * N+\delta_{j}}{N+1}$
$\delta_{j}=\left\{\begin{array}{c}1 \text { if } x_{i}=j \\ 0 \text { otherwise }\end{array}\right\}$
unriar undatoc

Ontologies

Sir Tim Berners-
Lee

- WWW
- HTML
- Semantic Web

Graph Theory
 - Arbitrary DAG

W3C

- OWL
- RDF
- Other standards

Computar.Info nationscience
Formal representation of a set of concepts within a domain and the relationships between those concepts
Metaphysics (Wiki)
Theory on existence of beings.
$=\equiv \equiv \equiv=\equiv=\Rightarrow$ ONTOLOGY is_a $\begin{gathered}\text { KNOWLEDGE } \\ \text { ARTIFACT }\end{gathered}$

SNOMED Example

Ontologies Can Be Large, Complicated

A 64-year-old women presents with a 3 cm mass in her left upper lobe, which was not present 18 months previously. Computed tomography confirms the presence of the mass without evidence or intedizstinal adenopathy. Transthoracic fine needle aspiration reveals non-small cell lung cancer. The surgeornsins the patient's medical record, x-ray findings, pulmonary

Adaptive Dynamic Programming for Optimizing Clustering

Features

Data Matrix

Clustering separately - Global model

- Rows
- Columns
- Biclustering (subspace clustering, coclustering, bidimensional clustering) Clustering of two dimensions simultaneously (clustering + feature selection) - Local model
- How hard? - NP complete
\checkmark Iterative row and column clustering combination
- Greedy iterative search
- Distributed parameter identification
- Divide-and-conquer
- Exhaustive bicluster enumeration

Hierarchical BiFAM

- BARTMAP

- State of the art biclustering algorithm
- Significantly outperforms other approaches
- HBiFAM
- Hierarchical Biclustering Fuzzy ARTMAP algorithm
- Provides deeper / more precise biclustering

Data source: M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, "Cluster analysis and display of genome-wide expression patterns," Proc. Nat Acad. Sci. U.S.A., vol. 95, pp. 14863-14868, Dec 1998.

Hierarchical BiFAM

- Figure. Heat map of the correlation between gene and sample of leukemia sample (prototype) presented contrast wise (brighter = more correlated) BARTMAP

Leukemia Data Set

External Criterion

DM \& ART for Hyperspectral Imaging

- Every pixel generates a continuous spectrum
- Image -> hypercube
- Agriculture, environment, mining, military
- Particularly challenging at high resolution
- E.g mining samples: over 200 spectral bands
- 250 k pixels / meter

 5 meters / hour

Can Achieve Several Orders of Magnitude Data Reduction

- Magnitude of largest eigenvalues (subset of many)
- Typically sparse matrix, only need the top few eigenvalues
- Amenable to parallelism

Cancer Gene Expression: Small Round Blue Cell Tumors

 2300. Clusternalization. Rand Index vs \# used

Conclusions

- Plenty of opportunity in the space between approaches.
- Synergies can create unique capabilities
- No shortage of exciting applications
- The best is yet to

You! come!

Question: Anything for Encore?
 Integral Reinforcement Learning

$$
\dot{x}=f(x)+g(x) u
$$

Can Avoid knowledge of drift term $f(x)$

Policy iteration requires repeated solution of the CT Bellman equation

$$
0=\dot{V}+r(x, u(x))=\left(\frac{\partial V}{\partial x}\right)^{T} \dot{x}+r(x, u(x))=\left(\frac{\partial V}{\partial x}\right)^{T} f(x, u(x))+Q(x)+u^{T} R u \equiv H\left(x, \frac{\partial V}{\partial x}, u(x)\right)
$$

This can be done online without knowing $f(x)$ using measurements of $x(t), u(t)$ along the system trajectories

[^0] ems based Or-policy iteration," Automatica, vol. 45, pp. 477-484, 2009.
system
$$
\dot{x}=f(x)+g(x) u
$$
value
$$
V(x(t))=\int_{t}^{\infty} r(x, u) d \tau
$$

Key Idea

Lemma 1 - Draguna Vrabie

$$
0=\left(\frac{\partial V}{\partial x}\right)^{T} f(x, u)+r(x, u) \equiv H\left(x, \frac{\partial V}{\partial x}, u\right), \quad V(0)=0
$$

Is equivalent to Integral reinf. form for the CT Bellman eq.

$$
V(x(t))=\int_{t}^{t+T} r(x, u) d \tau \quad+\quad V(x(t+T)), \quad V(0)=0
$$

Solves Bellman equation without knowing $f(x), g(x)$

Allows definition of temporal difference error for CT systems

$$
e(t) \sim V(x(t))+\int^{t+T} r(x, u) d \tau \quad+\quad V(x(t+T))
$$

Gain update (Policy)

Control
Ch. 15
$u_{k}(t)=-K_{k} x(t)$

Reinforcement Intervals T need not be the same They can be selected on-line in real time

Time Scales Analysis Contributions

Forward Jump Operator:
Backward Jump Operator: Graininess:

$$
\begin{aligned}
& \sigma(t):=\inf \{s \in T: s>t\} \\
& \rho(t):=\sup \{s \in T: s<t\} \\
& \mu(t):=\sigma(t)-t
\end{aligned}
$$

Mariv Rogexp

t_{1} is isolated	$\rho(t)<t<\sigma(t)$
t_{2} is left-scattered (right-dense)	$\rho(t)<t=\sigma(t)$
t_{3} is dense	$\rho(t)=t=\sigma(t)$
t_{4} is right-scattered (left-dense)	$\rho(t)=t<\sigma(t)$

Let x_{1}, \ldots, x_{n} be ordered variables such that $x_{i} \in T_{i}$ and $x_{i}=f_{i}\left(x_{1}, \ldots, x_{i-1}\right)$ Define $F_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{n}$ and $F_{i-1}\left(x_{1}, \ldots, x_{i-1}, f_{i}\left(x_{1}, \ldots, x_{i-1}\right)\right)$ Define ordered delta derivative as $x_{n}^{\Delta_{x_{i}}^{+}}=F_{i}^{\Delta x_{i}}$ Theorem: $\quad F_{j}^{\Delta_{x_{i}}}=\sum_{k=j+1} x_{n}\left(\sigma_{1}\left(x_{1}\right), x_{2}, \ldots, x_{n-1}\right)^{\Delta_{x_{i}}^{+}} x_{k}^{\Delta_{x_{i}}}$

Backpropagation on Time Scales
Hamilton-Jacobi-Bellman Equation:

$$
0=\min _{u}\left\{r(t)+J^{\Delta_{t}}(x(t), t)+J^{\Delta_{x}}(x(t), \sigma(t)) f(x(t), t)\right\}
$$

Theorem: Suppose $V(x(t), t)$ solves,$u^{*}(x(t), t)$ minimizes , $V(x(T), T)=r(x(T)), \hat{x}\left(t_{0}\right)=x\left(t_{0}\right), x^{*}(t)$ is a state trajectory, and $x^{*}\left(t_{0}\right)=x\left(t_{0}\right)$. Then $V(x(t), t)$ and $u^{*}(x(t), t)$ are optimal.

[^0]: rabie Pastravanu, M. Abu-Khalaf, and F. L. Lewis, "Adaptive optimal control for continuous-time linear

