a2 United States Patent

US010062013B2

ao) Patent No.: US 10,062,013 B2

Romanenko et al. 45) Date of Patent: Aug. 28,2018
(54) METHOD OF IMAGE PROCESSING (56) References Cited
(71) Applicant: Apical Ltd, Cambridge (GB) U.S. PATENT DOCUMENTS
3k
(72) Inventors: Ilya Romanenko, Loughborough (GB); 201210243789 Al 92012 Nang v G06K3§/;?;2
Ivan Tyukin, Leicester (GB); 2014/0126817 AL* 52014 Vitaladevuni ... GO6K 9/6267
Alexander Gorban, Leicester (GB); 382/170
Konstantin Sofeikov, Loughborough 2014/0126824 Al* 52014 Vitaladevuni ......... GO6F 17/16
(GB) 382/190
(Continued)
(73) Assignee: Apical Ltd., Cambridge (GB)
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject. to any dlsclalmer,. the term of this CN 104881651 A /2015
patent is extended or adjusted under 35 CN 105335758 A 212016
U.S.C. 154(b) by 68 days. WO 2004010329 Al 1/2004
(21)  Appl. No.: 15/389,858 OTHER PUBLICATIONS
(22) Filed: Dec. 23, 2016 Camastra, Francesco, and Antonino Staiano. “Intrinsic dimension
estimation: Advances and open problems.” Information Sciences
(65) Prior Publication Data 328 (2016): 26-41.
US 2017/0185870 A1 Jun. 29, 2017 (Continued)
. L L. Primary Examiner — Utpal Shah
30 Foreign Application Priority Data (74) Attorney, Agent, or Firm — FIP US LLP
Dec. 23, 2015 (GB) ................................... 1522819.0 (57) ABSTRACT
(51) Int. CL According to an aspect of the present disclosure, there is
GO6K 9/00 (2006.01) pr9V1ded a ;ngthqd of image processing. The method com-
GO6K 9/62 (2006.01) prises receiving image fiata comprising a set of feature
GO6K 9/46 (2006.01) vectors of a first dimensionality, the feature vectors corre-
GO6T 7/70 (2017'01) sponding to a class of objects. A variable projection is
) US. Cl ’ applied to each feature vector in the set of feature vectors to
(52) US. CL ) generate a set of projected vectors of a second dimension-
CPC ....cccue. GO6K 9/6267 (2013.01); GO6K 9/46 ality. The method then comprises processing the set of
(2013.01); GO6K 9/4604 (2013.01); GO6K projected vectors to generate a model for the class of objects.
. 9./ 628 .(2013'01); GO6T 7/70 (2017.01) A projection is applied to the model to generate an object
(58) Field of Classification Search classification model, of the first dimensionality, for the class

CPC ...... GO6K 9/6247; GO6K 9/6267; GO6K 9/46;
GO6K 9/628; GO6K 9/629; GO6K 9/6269
See application file for complete search history.

100

\

105

of objects.

19 Claims, 6 Drawing Sheets

Receive image data

110

A 4

Generate projected vectors (apply
variable projection)

A 4

"
S \ Generate model (process
projected vectors)

A 4

120

Generate object classification
model (apply projection to model)




US 10,062,013 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2015/0039260 Al* 2/2015 Niskanen ............ GO6K 9/6244
702/141
2017/0039737 Al* 2/2017 Madabhushi ........ A61B 5/7267

OTHER PUBLICATIONS

Vinyals, Oriol, et al. “Learning with recursive perceptual represen-
tations.” Advances in Neural Information Processing Systems.
2012.

Johnson, William B., and Assaf Naor. “The Johnson-Lindenstrauss
lemma almost characterizes Hilbert space, but not quite.” Proceed-
ings of the twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms. Society for Industrial and Applied Mathematics, 2009.
Johnson, W., and J. Lindenstrauss. “Extensions of Lipschhitz maps
into a Hilbert space.” Contemporary Math 26 (1984).

Le, Quoc, Tamas Sarlos, and Alex Smola. “Fastfood-approximating
kernel expansions in loglinear time.” Proceedings of the interna-
tional conference on machine learning 2013.

Durrant, Robert J., and Ata Kaban. “Random Projections as
Regularizers: Learning a Linear Discriminant Ensemble from Fewer
Observations than Dimensions.” ACML. 2013.

Bingham, FElla, and Heikki Mannila. “Random projection in dimen-
sionality reduction: applications to image and text data.” Proceed-
ings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2001.

Lee, Soomin, and Angelia Nedi¢. “DrSVM: Distributed random
projection algorithms for SVMs.” 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC). IEEE, 2012.

Paul, Saurabh, et al. “Random Projections for Support Vector
Machines.” AISTATS. vol. 3. 2013.

Paul, Saurabh, et al. “Random projections for linear support vector
machines.” ACM Transactions on Knowledge Discovery from Data
(TKDD) 8.4 (2014): 22.

Maudes, Jestis, et al. “Random projections for linear SVM
ensembles.” Applied Intelligence 34.3 (2011): 347-359.

Berger, Adam. “Error-correcting output coding for text classifica-
tion.” IJCAI-99: Workshop on machine learning for information
filtering. 1999.

Shi, Qinfeng, et al. “Is margin preserved after random projection?”
arXiv preprint arXiv:1206.4651 (2012).

Duarte, Marco F., et al. “Multiscale random projections for com-
pressive classification.” 2007 IEEE International conference on
Image Processing. vol. 6. IEEE, 2007.

Blum, Avrim. “Random projection, margins, kernels, and feature-
selection.” Subspace, Latent Structure and Feature Selection.
Springer Berlin Heidelberg, 2006. 52-68.

Gunduz, Hakan et al. “Glasses detection in face images using
histogram of Oriented Gradients.” 2014 22nd Signal Processing and
Communications Applications Conference (SIU) (2014): 1889-
1892.

GB Search Report dated Jun. 21, 2017 for GB Application No.
GB1622153.3.

* cited by examiner



US 10,062,013 B2

Sheet 1 of 6

Aug. 28, 2018

U.S. Patent

L aunbi4

(|lepows 0} uonosfoid Aldde) jppow
uoyeoyisse|d 10alqo sjeieusg)

i

(s10109A pajosfoid
$5800.d) |opowl sjeIBUsD)

i

(uonosfoud a|qeren
Aldde) sio1oaa pejosioid ajeisusn

RN oLl

A

elep abewlr aA1909Y

AN S0L

001



US 10,062,013 B2

Sheet 2 of 6

Aug. 28, 2018

U.S. Patent

Z 24nbi4

03574

022
/

198
[SPOW JsSues}

ploysaiyy
Aoeinooe aonpay

A 4

Jaqwinu
uoneiayl 198y

™~ Gez

s suoneiol
Xen

Lpioysaiyy
< Aoeinooy

Glc

S|opoWl 189 |

/ 74

i

s|epow Jo
Jegquinu e 108}

/ G0c

00¢



U.S. Patent

Aug. 28, 2018

Sheet 3 of 6

340

PaN

L 310
| 315

320

305

L]
«©
o

S

O

Ry

Q

©

=

x

©

o

o

2 |\g

] lop]

)

T
o
™
o

US 10,062,013 B2

Figure 3



U.S. Patent Aug. 28, 2018 Sheet 4 of 6 US 10,062,013 B2

405
420
Figure 4

425

410

415

400
v



U.S. Patent Aug. 28, 2018 Sheet 5 of 6 US 10,062,013 B2

520
Figure 5a

505

|
525

I-I_I-I
510

515

1
525

500
v



US 10,062,013 B2

Sheet 6 of 6

Aug. 28, 2018

U.S. Patent

q¢ 24nbi4

)2

09¢

0€q

TANWANYANYANYAN

9009

PO0Y

3009

q009

/// 20049



US 10,062,013 B2

1
METHOD OF IMAGE PROCESSING

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to Great Britain patent
application no. GB 1522819.0, filed on Dec. 23, 2015, which
is incorporated by reference in its entirety herein.

TECHNICAL FIELD

The present disclosure relates to methods, apparatus and
computer programs for producing and processing data asso-
ciated with image processing.

BACKGROUND

It is known to use a classifier to identify an object of
interest in an image. Classifiers attempting to identify an
object in images where the object varies in appearance, for
example due to distortion, may suffer reduced performance
or failure where the variation is too high.

Examples of publications in relevant technical fields
include:

Vinyals, Oriol, et al. “Learning with recursive perceptual
representations.” Advances in Neural Information Process-
ing Systems. 2012,

Bingham, Ella, and Heikki Mannila. “Random projection
in dimensionality reduction: applications to image and text
data.” Proceedings of the seventh ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining.
ACM, 2001; and

Paul, Saurabh, et al. “Random Projections for Support
Vector Machines.” AISTATS. Vol. 3. 2013.

It is desirable to provide a method of processing an image
for generating an object classification model that is less
susceptible to variation in an objects appearance when
classifying the object.

SUMMARY

According to a first aspect of the disclosure, there is
provided a method of image processing. The method com-
prises: receiving image data comprising a set of feature
vectors of a first dimensionality, the feature vectors corre-
sponding to a class of objects; generating a set of projected
vectors of a second dimensionality, lower than the first
dimensionality, by applying a variable projection to each
feature vector in the set of feature vectors; processing the set
of projected vectors to generate a model for the class of
objects; and applying a projection to the model to generate
an object classification model, of the first dimensionality, for
the class of objects.

The variable projection may comprise a random, or pseu-
dorandom, projection. Generating the set of projected vec-
tors may comprise generating a plurality of sets of projected
vectors of the second dimensionality by applying each of a
plurality of variable projections to each feature vector in the
set of feature vectors. Processing the set of projected vectors
may comprise processing each of the plurality of sets of
projected vectors to generate a plurality of models for the
class of objects. Applying the projection to the model may
comprise applying a projection to each of the plurality of
models to generate a plurality of object classification mod-
els, of the first dimensionality, for the class of objects. In
some examples, the method comprises testing each model of
the plurality of models and indicating an accuracy value for
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each model based on the testing. The method may comprise
selecting a subset of the plurality of models based on the
accuracy values of the models. The method may additionally
comprise applying a projection to each model in the subset
of the plurality of models to generate a plurality of object
classification models, of the first dimensionality, for the
class of objects. Processing the set of projected vectors to
generate a model for the class of objects may use a linear
classification model, which may comprise at least one of: a
support vector machine; a two neuron classifier; or a Fisher
discriminant in some examples. The image data may be
captured by an image sensor in some examples. Additionally
or alternatively, the image data may represent at least part of
one or more images, wherein each of the one or more images
comprises an object of the class of objects, wherein the
image data is processed by a feature extractor to produce the
image data comprising the set of feature vectors correspond-
ing to the class of objects. In some examples, receiving the
image data comprises: capturing image data representing at
least part of an image using an image sensor; on receiving
an indication from an object detector that the image com-
prises an object of the class of objects, tracking the object
and capturing, using the image sensor, image data corre-
sponding to video frames comprising the object; and pro-
cessing the image data using a feature extractor to produce
the image data comprising the set of feature vectors corre-
sponding to the class of objects.

According to a further aspect of the present disclosure,
there is provided a non-transitory, computer-readable stor-
age medium comprising a set of computer-readable instruc-
tions stored thereon which, when executed by at least one
processor, cause the at least one processor to perform a
method as described above.

According to a further aspect, there is provided a com-
puter vision apparatus comprising a classifier, the classifier
comprising at least one of a plurality of object classification
models generated according to a method described in the
first aspect of the disclosure. In some examples, the com-
puter vision apparatus may comprise a feature extractor
configured to receive image data representing at least part of
an image, and produce image data comprising a plurality of
feature vectors. The computer vision apparatus may com-
prise an image sensor, wherein the image data representing
at least part of an image is captured by the image sensor. The
classifier may be configured to: process the image data
comprising the plurality of feature vectors; and determine,
using the at least one of the plurality of object classification
models, whether the image data comprises an object in the
class of objects corresponding to the object classification
models. The classifier may additionally be configured to
indicate whether the image data comprises an object in the
class of objects corresponding to the object classification
models.

Further features and advantages of the methods and
apparatuses will become apparent from the following
description of preferred embodiments, given by way of
example only, which is made with reference to the accom-
panying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a flow diagram of a method according to
some embodiments.

FIG. 2 shows a flow diagram of a method according to
some embodiments.

FIG. 3 shows a schematic representation of a computer
vision apparatus according to some embodiments.
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FIG. 4 shows a schematic representation of a computer
vision apparatus according to some embodiments.

FIG. 5a shows a schematic representation of a computer
vision apparatus according to some embodiments.

FIG. 5b shows a schematic representation of a computer
vision apparatus according to some embodiments.

DETAILED DESCRIPTION

In this description, for the purpose of explanation, numer-
ous specific details of certain examples are set forth. Ref-
erence in the specification to “an example” or similar
language means that a particular feature, structure, or char-
acteristic described in connection with the example is
included in at least that one example, but not necessarily in
other examples. It should further be noted that certain
examples are described schematically with certain features
omitted and/or necessarily simplified for ease of explanation
and understanding of the concepts underlying the examples.

Examples described herein provide a method of process-
ing image data. The image data may be captured by an image
sensor or image capture device, such as a camera or a video
camera. The image data may correspond with a static image
or a frame of a video and may be in any suitable image or
video data format. Common formats of static images include
the JPEG (Joint Photographic Experts Group) format, the
GIF (Graphics Interchange Format), the BMP (Windows
bitmap) format and the PNG (Portable Network Graphics)
format. Typical formats for video data include the Audio
Video Interleave (AVI) format, any of the MPEG (Motion
Pictures Expert Group) formats such as MP4, MPEG-1 or
MPEG-2, the AVCHD (Advanced Video Coding High Defi-
nition) format, or the DV or HDV formats (Digital Video or
High-definition Digital Video). The image data may repre-
sent at least part of an image captured by an image sensor:
the image may include any graphical or visual content, for
example text, graphics, pictures, and/or photographs.

Object classification may be difficult in cases where an
object, of a predetermined class of objects for classitying,
varies in shape or is distorted when captured in an image.
For example, in any system comprising an image sensor
with an off-axis field-of-view, object classifiers may have
much reduced accuracy for identifying and classifying
objects and may indicate more false negatives. An example
of such a case is a system wherein images are captured via
a wide-angle lens and/or an elevated image sensor.

Wide-angle, or fisheye, lenses and cameras may be used
in smart home or smart office systems, which may include
multiple computer vision systems performing various func-
tions such as object detection, object tracking, and scene
interpretation. For example, a camera with a wide-angle lens
that is placed on a ceiling of a room may cover the whole
room in one shot, and communicate its captured image
and/or video data feed. The wide-angle lens may, however,
exhibit viewing-angle distortion of an object, whereby the
object varies in shape in the image depending on where the
object is positioned relative to the lens and the image sensor.
For example, a person in the centre of the image may be
enlarged when viewed at a short distance by the image
sensor, and so the appearance of a person standing at the
centre of the lens may be dramatically different from a
person stood at the edge of the lens. Hence, as a person
walks around the field of view of the image sensor in this
example, their shape through the wide-angle, or fisheye, lens
may be highly distorted.

Difficulties may also arise in systems where a camera is
elevated with respect to a scene which it may be capturing,
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such as placement of a camera on or near a ceiling of a room.
A camera placed at an elevation may not capture some part
of the object, whether or not the camera employs a wide-
angle lens, which may make the task of object detection and
classification even more complex. As an example, most of a
person’s body may be hidden from a view of a camera when
the person is standing directly underneath the camera, and so
dimensions and/or proportions of their shape in the captured
image(s) may be significantly distorted.

There is therefore a need for a system performing object
detection that would be able to detect objects that may be
distorted and that may vary in shape due to the optics of the
image sensor, the placement of the image sensor and/or the
positioning of the object relative to the image sensor.

There is also a need for creating a set of training images,
covering many possible object-view variations, that may be
used in such an object detection system in which objects
vary, for example in shape or by distortion.

FIG. 1 shows a flow diagram of a method 100 of image
processing. The method comprises a receiving step 105 in
which image data is received. The image data may be of any
suitable format for processing. The image data includes a set
of feature vectors of a first dimensionality, which may be
derived from an image or raw image data captured by an
image sensor, corresponding with a particular class of
objects, for example human faces.

The image sensor may comprise a charge-coupled device
or complementary metal-oxide-semiconductor image sen-
sor. In other examples, the image sensor may comprise a
motion detector, an ultrasonic sensor, an infra-red sensor, or
a radar receiver such as a phased array radar receiver. The
sensor itself may perform image processing steps in relation
to the raw image data and/or image processing may be
performed by a separate image processor or processors.

Feature vectors may correspond with descriptors that
represent or characterize features of an image that the image
data represents, for example features of particular key-points
or distinctive regions of the image, such as a human face, or
a feature indicating a human face, in the given example.
Various different methods may be used to obtain suitable
feature vectors. For example, the feature vectors may be
based on, or include, one or more of: a Histogram of
Oriented Gradients (HoG); Haar-like features that are, for
example, intuitively similar to Haar wavelets; Local Binary
Patterns (LBP); a bag of words (which typically involves a
histogram representation of an image based on image fea-
tures); or vectors obtained from a neural network such as a
convolutional neural network. The feature vectors may be
normalized appropriately, for example using the [.-2 norm
(sometimes referred to as the Euclidean norm). The feature
vectors may therefore be considered to correspond to points
on a sphere in a multidimensional space.

The image data received during the receiving step 105
may correspond to multiple images that each comprise an
object in the class of objects, for example various images
that each include a human face.

The method then comprises a step 110 of generating a set
of projected vectors of a second dimensionality by applying
a variable projection to each feature vector in the set of
feature vectors. For example, the feature vectors in the set of
feature vectors may have relatively high dimensionality,
with the feature vectors each comprising more than one
thousand components. In some examples, the variable pro-
jection may project each feature vector in the set of feature
vectors into a lower-dimensional space:

Sp=V,- P
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where V, is a feature vector in the set of feature vectors, P’
is a variable projection, for example a projection matrix, and
S,/ is a projected vector. The feature vector V,, has a first
dimensionality. The second dimensionality of the projected
vector is less than the original, first, dimensionality of the
feature vector, and is preferably at least five times less, for
example less than 200 components in this example. The
variable projection matrix P’ has a dimensionality for pro-
jecting from the first dimensionality to the second. Each row
of the projection matrix P’ may have unit length.

In some examples, the variable projection comprises a
random, or pseudorandom, projection. For example, the
variable projection may be generated randomly or pseudo-
randomly. In cases where the variable projection comprises
a variable projection matrix for applying to a vector, for
example a feature vector, the variable projection matrix may
in some examples comprise a random, or pseudorandom,
projection matrix. For example, a random or pseudorandom
projection matrix may be a projection matrix comprising
components that are generated randomly or pseudo-ran-
domly. There are various ways to generate a random or
pseudorandom projection matrix, for example by using a
Gaussian distribution, or a simple distribution of predeter-
mined possible values which the components may take, and
associated probabilities for selecting each of the predeter-
mined possible values.

Applying the variable projection P’ to each feature vector
V, in the set of feature vectors generates a set of projected
vectors S,” of a second dimensionality, the second dimen-
sionality being lower than the first dimensionality.

The method 100 then comprises a step 115 of processing
the set of projected vectors to generate a model for the class
of objects. This processing of the set of projected vectors
may use, or be carried out by, a linear classification model
or method, such as a support vector machine (SVM) or a
Fisher discriminant, for example. An SVM is a supervised
machine learning technique for solving classification tasks
that are based on the concept of decision planes to distin-
guish objects of different class. For example, a hyperplane in
a multidimensional space may be constructed which sepa-
rates, with maximum margin, positive and negative training
examples. The linear classification model or method may
therefore be used to linearly separate points (e.g. corre-
sponding with images that include an object of the class of
objects) from a set of other points (e.g. corresponding with
images that do not include an object of the class) in the
lower-dimensional projected space.

A model m; is generated from the set of projected vectors
S,’. The set of projected vectors may be considered a training
set for producing a model m,. For example, an SVM may
employ quadratic optimization of error in a training process
using the set of projected vectors.

Finally, the method 100 comprises a step 120 of applying
a projection to the model to generate an object classification
model, of the first dimensionality, for the class of objects.
The projection applied to the model m, is different to the
variable projection applied to the feature vectors in the step
110 of generating the set of projected vectors. While the
variable projection may reduce the dimensionality of the
vectors by projecting the set of feature vectors of the first
dimensionality into a set of projected vectors of the (lower)
second dimensionality, the projection applied to the model
m, projects the model into higher dimensional space; gen-
erating an object classification model M, of the first dimen-
sionality, which is higher than the second dimensionality,
and preferably at least five times that of the second dimen-
sionality.
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Generating object classification models in this way, by
projecting the feature vectors via a variable projection into
the second, lower, dimensionality allows for training in a
lower dimensional space. For example, training a classifier
such as an SVM in the original feature space would be
burdensome and impractical due to the high dimensional-
ity—the feature vectors may have more than one thousand
components in some examples. However, projecting the
feature vectors into the lower dimensionality maintains the
separability of the dataset (set of vectors) while allowing for
the possibility of classifying, or clustering, with a linear
classification model, for example. Projecting the generated
model into the first dimensionality, higher than the second
dimensionality, allows for the generated object classification
model to be used for classifying objects (in the class of
objects associated with the object classification model)
during real-time image capture, as described in example
implementations below. For example, the first dimensional-
ity may be equal to the first dimensionality in certain cases,
meaning that a classifier implementing an object classifica-
tion model generated according to the disclosed methods
may be capable of receiving (unknown) image data com-
prising feature vectors and classifying objects in real time
using the object classification model.

Object classification models generated in this way provide
particular advantages in cases where the object for classi-
fying (an object of a predetermined class of objects) varies,
or is distorted in the image data provided to the object
classifier, for example where the images are captured via a
wide-angle lens and/or an elevated image sensor. This
method therefore allows for an object classifier, or object
detection system, to store an object classification model in
high-dimensional feature space for use in classifying objects
that are subjected to variation and/or distortion during image
capture. The object classifier or object detection system may
hold several such object classification models for identifying
and classifying objects in a particular class, which may be
generated as set out in more detailed examples below.

In some examples, generating the set of projected vectors
includes generating a plurality of sets of projected vectors of
the second dimensionality, lower than the first dimension-
ality, by applying each of a plurality of variable projections
to each feature vector in the set of feature vectors. For
example, given a set V of feature vectors V,, applying each
of a plurality of variable projections P?, P'*!, . . . to each
feature vector in the set V generates a plurality of sets of
projected vectors: 8, S, . .. where each set S’ is associated
with a variable projection P’ (shown here by corresponding
indices i, i+1, . . . ) and comprises projected vectors S,”:

S'=y-P

In this notation, P, , represents a variable projection to the
second dimensionality j (from the first dimensionality k of
the feature vectors) of index i.

In some examples, each variable projection P in the
plurality of variable projections P, P™*', . . . may comprise
a random, or pseudorandom, projection. For example, each
variable projection may be randomly, or pseudo-randomly,
generated. In certain cases, the variable projection may
comprise a variable projection matrix for applying to a
vector, for example a feature vector. In such a case, the
variable projection matrix may comprise a random, or
pseudorandom, projection matrix, for example, a projection
matrix comprising components that are generated randomly
or pseudo-randomly. There are various ways to generate a
random or pseudorandom projection matrix, for example by
randomly selecting a value from a predetermined set of
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values, such as a distribution. Probabilities of selection may
be associated with distribution values, for example, a Gauss-
ian distribution may be used, or a discrete distribution of a
set of values may alternatively be used.

In examples where a plurality of sets of projected vectors
(S, 8™, .. .) are generated, each of the plurality of sets of
projected vectors may be processed to generate a plurality of
models (m,/, m;”*!, . . . ) for the class of objects. For
example, thousands of variable projections P’ may be used,
generating thousands of sets of projected vectors S', which
in turn may be processed to generate thousands of models;
each model m;’ corresponding to a set of projected vectors
S

In some examples, the step 120 of applying the projection
to the model may comprise applying a projection to each of
the plurality of models (m,’, m;*', . . . ) to generate a
plurality of object classification models (M,’, M,"**, .. .), of
the first dimensionality, for the class of objects. The projec-
tion applied to each of the plurality of models may, for
example, be the inverse of the associated variable projection
(P, P*', . . .). Where the variable projections are repre-
sented by matrices, the inverse matrix may be applied in this
step 120, for example. In some cases, the inverse matrix may
be the variable projection matrix transposed.

In certain cases, the method may include testing each
model of the plurality of models (m,’, m,*', . . . ), and
indicating an accuracy value for each model based on the
testing. For example, the models may be tested by cross-
validation in order to assess how accurate each model is, and
how results associated with each model will generalise to an
independent (unknown) dataset. The cross validation may be
10-fold in a particular example, but may be k-fold in other
examples, where k is a predetermined number (not associ-
ated with index k of the vectors or matrices). In other
examples, the models are tested on an independent verifi-
cation (known) dataset.

A subset of the plurality of models may then be selected
based on the accuracy values of the models indicated in the
testing. For example, the subset may comprise a first pre-
determined number of models, which are selected as those
models with the highest accuracy values. In some examples,
the subset is a first subset of the plurality of models, and a
second subset of models may be selected from the first
subset. The second subset may include a second predeter-
mined number of models selected from the first subset by a
selection method. In some examples, a clustering algorithm
may be used during selection of the subset of models.

FIG. 2 shows a flow diagram of such a selection method
according to an example. The example selection method 200
shown begins with a selection step 205, wherein the second
predetermined number of models (m;/, m/*!, . . . ) are
selected, for example randomly or pseudo-randomly, from
the first subset. In an example, the second predetermined
number is sixteen. The second predetermined number of
models are then tested at the next step 210, for example by
cross validation or using an independent verification dataset.
The testing step 210 gives an accuracy output for the second
predetermined number of models combined.

At the next step 215 of the selection method 200, the
accuracy of the models is compared to a predetermined
threshold. If the accuracy is above the threshold, or equal to
the threshold in some examples, the models that were
selected in the selection step 205 are transmitted as the
model set in a transmission step 220. If the accuracy of the
models is below or equal to the threshold, or in some
examples below but not equal to the threshold, then a
number of iterations of the selection, testing and accuracy
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comparison steps 205, 210, 215 is compared to a maximum
iteration threshold i.e. the maximum number of iterations of
those steps 205, 210, 215 permitted in the selection method
200, at the next step 225. If the maximum iteration threshold
has not been reached, the selection step 205 is carried out a
further time to select a new second predetermined number of
models from the first subset, followed by the testing step 210
and accuracy comparison step 215 for the new selected
models. If the maximum number of iterations has been
reached in the iteration comparison step 225, the next step
230 comprises reducing the accuracy threshold for the
accuracy comparison step 215. The step 230 of reducing the
accuracy threshold may involve a rule such as determining
the new accuracy threshold as a predetermined fraction of
the previous accuracy threshold, for example 99% of the
previous accuracy threshold. This step is followed by a step
235 of resetting the number of iterations of the selection,
testing and accuracy comparison steps 205, 210, 215, for
example to zero, for comparing in the iteration comparison
step 225. The selection method 200 is then iterated, begin-
ning with a new selection of models made from the first
subset in the selection step 205.

In certain examples where a subset of the plurality of
models is selected, a projection may be applied to each
model in the subset of the plurality of models (m,,
m,*, . ..) to generate a plurality of object classification
models (M,, M,”**, . . .) for the class of objects. The object
classification models may be of the first dimensionality. The
subset may be the first subset or the second subset, according
to described examples. As described with reference to FIG.
1, the projection applied to each model of the subset of the
plurality of models (m,’, m;”*", . . . ) may, for example, be
the inverse of the associated variable projection (P,
P! . ..). Where the variable projections are represented by
matrices, the inverse matrix may be applied, for example.

The plurality of object classification models for the class
of objects may be stored in, or accessible by, a classifier for
use in classifying objects, particularly those that are sub-
jected to variation and/or distortion during image capture, as
described with reference to apparatus examples below.

In any of the described examples, the processing of the
projected vectors, for example each of the plurality of sets
(S, 8™, .. .) of projected vectors S, to generate a plurality
of models (m,;}, m,”*', . . .) for the class of objects, may use
a linear classification model. For example, the linear clas-
sification model may comprise at least one of a support
vector machine, a two neuron classifier, or a Fisher discrimi-
nant.

In examples where the processing of the projected vectors
uses a linear classification method, the process may be
represented by matrix multiplication. For example, in an
alternative matrix notation, a set feature vectors V are
projected by projection matrices P to produce projected
vectors, or training sets, S as: S=V'P. Each set S of
projected vectors may be trained or modelled, for example
a linear classification technique, to produce a set of models
m,, as described. The process may be represented by matrix
multiplication, such that an output R, from the linear clas-
sification may be represented in this alternative matrix
notation as:

Ryj=m;- (Ve -P)T
=Vk-(mj-P3-)T

=Ve-MT
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wherein V,, is a k-dimensional feature vector in the feature
space of the first dimensionality, and M, may be regarded as
a projection of a model m, of the second dimensionality into
a space with the first dimensionality, higher than the second
dimensionality. This may allow for the use of a dot-product
machine or method, and may also remove the need of
finding a low-dimensional projection for each vector, which
is impractical due to the large size of the projection matrices
and computational operation for each projection.

Compared to using a standard linear classifier as an
approach to classifying objects subject to variation and
distortion, the methods disclosed may be fed with training
examples of objects that are distorted, or vary, in appear-
ance—for example images of people as they appear captured
via a fisheye lens in different positions. The methods are able
to derive a plurality of object classification models, for
example five, which may cover the entire space. The size of
a training set required for the methods disclosed may also be
smaller by two orders of magnitude compared to some other
methods.

In any of the method examples described herein, the
image data received may represent at least part of one or
more images. Each of the one or more images may comprise
an object of the class of objects, for example a predeter-
mined class of objects that is of interest for detecting and/or
classifying. The image data may be processed by a feature
extractor to produce the image data comprising the set of
feature vectors corresponding to the class of objects.

In certain cases, receiving the image data may comprise
capturing image data representing at least part of an image
using an image sensor, and on receiving an indication from
an object detector that the image comprises an object of the
class of objects, tracking the object and capturing, using the
image sensor, image data. The object detector may be a
standard object classifier or classification system, for
example.

The image data may correspond to video frames com-
prising the object, for example. The image data may then be
processed using a feature extractor to produce the image
data comprising the set of feature vectors corresponding to
the class of objects. This tracking and capturing may allow
for generation of data sets for training a classification system
based on at least one of the methods of processing image
data described. In other methods for generating such data
sets for training a classifier to be able to classify an object
with a variety, or continuum, of different shapes or repre-
sentations in the image data, one model may need to be
associated to a particular shape. Thus, the number of models
required may be extremely large and training the classifier
would be computationally burdensome. Problems may also
arise as the large number of models required may not be
discrete enough, and identifying a natural boundary may
also be difficult.

This method of capturing image data which may be used
in generating, or adding to, a training data set may be
implemented by an adaptive tracker for tracking the object
in the class of objects. The adaptive tracker may follow the
object from one frame to the next, for example, and may be
able to track the object effectively when only small varia-
tions in position and shape may occur from one frame to the
next. Typically, such visual trackers use an “object neigh-
bourhood” derived from a frame, based on a position and
size of the object in the previous frame Image content in the
search area may be represented in a more compact form to
represent image features, but may therefore also reduce the
amount of information. A number of correlations may then
be performed to match an object area representation (vector)
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from a previous frame with a number of possible object area
representations (vectors) within an object neighbourhood in
a current frame, in order to identify the new position of the
object. Various techniques may be used to accumulate object
representations over a number of frames to perform tracking
more reliably.

Hence, in examples wherein a camera with a wide-angle
lens, or a fisheye camera, is positioned on a ceiling, such a
tracking system may record and track predetermined objects
as they move around the camera’s field of view, for example
people as they walk around beneath the camera on the
ceiling. Such an adaptive (visual) tracker is therefore able to
build up one or more training sets automatically. These
methods make use of the fact that a camera may take a large
number frames per second and may therefore automatically
create a set of training images. The methods may, in some
examples, effectively crop or add thumbnails that may then
be added to a set of training images.

FIG. 3 shows a schematic representation of a computer
vision apparatus 300 according to an example. The computer
vision apparatus comprises a classifier 305. The classifier
comprises at least one of the plurality of object classification
models described in the method examples. The classifier 305
shown in this example comprises a number of object clas-
sification models 310, 315, 320. In a particular example, the
classifier 305 comprises sixteen object classification models
310, 315, 320.

The computer vision apparatus 300 may, in some
examples, further comprise a feature extractor 325 config-
ured to receive image data 330 representing at least part of
an image, and produce image data 335 comprising a plural-
ity of feature vectors.

The classifier 305 may be configured to process the image
data 335 comprising the plurality of feature vectors, for
example as received from the feature extractor in the appa-
ratus 300 shown in FIG. 3. The classifier 305 may also be
configured to determine, using the at least one of the
plurality of object classification models 310, 315, 320,
whether the image data 330 comprises an object in the class
of objects corresponding to the object classification models
310, 315, 320. In some examples, the classifier 305 may also
be configured to indicate whether the image data 330
comprises an object in the class of objects corresponding to
the object classification models 310, 315, 320. For example,
the classifier 305 may transmit an indication 340 of a
positive or negative classification.

The computer vision apparatus 300 may comprise an
integrated circuit, or computer chip, in some examples.

FIG. 4 shows a schematic representation of a computer
vision apparatus 400 according to an example. The computer
vision apparatus comprises an image sensor 415, which may
capture image data representing at least part of an image.
The image sensor 415 may be comprised within a sensor
module 420 communicatively connected to a printed circuit
board (PCB) 405. The computer vision apparatus 400 may
comprise an integrated circuit or computer chip 410 which
may incorporate an example of the computer vision appa-
ratus 300 described with reference to FIG. 3. For example,
the computer chip 410 may include a classifier comprising
at least one of the plurality of object classification models
described in the method examples. The computer vision
apparatus 400 shown in FIG. 4 comprises a lens 425
connected to the sensor module 420. The image sensor 415
in the sensor module 420 may, for example, form image data
as an array of pixels, each pixel representing an intensity of
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light received at the sensor 415 via the lens 425. The lens
425 may be a wide-angle lens or a fisheye lens in certain
examples.

FIG. 5a shows a schematic representation of a computer
vision apparatus 500 according to an example. The computer
vision apparatus 500 comprises a lightbulb 520 and one or
more light-emitting diodes (LEDs) 525 forming an LED
light or lamp. The computer vision apparatus 500 also
comprises an integrated circuit or computer chip 510 which
may incorporate an example of the computer vision appa-
ratus 300 described with reference to FIG. 3, and/or corre-
spond with the computer chip 410 of the computer vision
apparatus 400 shown in FIG. 4. The computer chip 510,
comprising a classifier with at least one of the plurality of
object classification models stored thereon, is connected to
a PCB 505, which is communicatively connected to an
image sensor 515.

FIG. 5b shows a schematic representation of a computer
vision apparatus 550 according to an example. The computer
vision apparatus 550 comprises a plurality of computer
vision apparatuses 500a, 5005, 500c, 5004, 500e¢, each
corresponding to an implementation of the computer vision
apparatus 500 described with reference to FIG. 5a. Each of
the computer vision apparatuses 500a, 5005, 500c, 5004,
500e may comprise a computer chip 510 for object detec-
tion, including a classifier with one or more object classi-
fication models corresponding to a predetermined class of
objects for detection, for example human faces. The com-
puter vision apparatuses 500a, 5005, 500¢, 5004, 500¢ may
each be connected in a network 530, and in communication
with a network hub 540. The network hub 540 may be a
smart home/office/building system and/or a security system.
In some examples, one or more of the computer vision
apparatuses 5004, 5005, 500¢, 5004, 500¢ may detect and/or
classify an object, for example a human face, and transmit
an indication of positive detection and/or classification to the
network hub 540. The network hub 540 may then forward
the indication to a user in an example.

Methods of the present disclosure may be implemented by
way of a non-transitory computer-readable storage medium
comprising a set of computer-readable instructions stored
thereon which, when executed by at least one processor,
cause the at least one processor to perform a method
according to the present disclosure. The computer readable
instructions may be retrieved from a machine-readable
media, e.g. any media that can contain, store, or maintain
programs and data for use by or in connection with an
instruction execution system. In this case, machine-readable
media can comprise any one of many physical media such
as, for example, electronic, magnetic, optical, electromag-
netic, or semiconductor media. More specific examples of
suitable machine-readable media include, but are not limited
to, a hard drive, a random access memory (RAM), a read
only memory (ROM), an erasable programmable read-only
memory, or a portable disc.

The above embodiments are to be understood as illustra-
tive examples. Further embodiments are envisaged. For
example, different classes of objects may be predetermined
for detection and/or classification. Thus, certain examples of
the described methods may produce a plurality of first-
dimensionality object classification models for each class of
objects. Certain examples of the described computer vision
apparatuses may therefore comprise the plurality of first-
dimensionality object classification models for each class of
objects.

Embodiments are also envisaged where the integrated
circuit comprising the object classifier (which may store, or
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at least access, the object classification models) may be
incorporated into an existing vision system, such as a
conventional security camera featuring an image sensor and
a wide-angle lens.

It is also envisaged that the methods of the present
disclosure may additionally, or alternatively, be imple-
mented in hardware for a fixed or portable device, such as
a smart building sensor or fisheye security camera, or any
other imaging device, for example a smartphone. Classifi-
cation performed by a classifier comprising the object clas-
sification models generated according to the models may
occur in real-time, for example during image capture by an
image sensor in direct or indirect communication with the
classifier.

It is to be understood that any feature described in relation
to any one embodiment may be used alone, or in combina-
tion with other features described, and may also be used in
combination with one or more features of any other of the
embodiments, or any combination of any other of the
embodiments. Furthermore, equivalents and modifications
not described above may also be employed without depart-
ing from the scope of the disclosure.

The invention claimed is:

1. A method of processing image data, the method com-
prising:

receiving image data comprising a set of feature vectors

of a first dimensionality, the feature vectors corre-
sponding to a class of objects;

generating a set of projected vectors of a second dimen-

sionality, lower than the first dimensionality, by apply-
ing a variable projection to each feature vector in the set
of feature vectors;

processing the set of projected vectors to generate a model

for the class of objects; and

applying a projection to the model to generate an object

classification model, of the first dimensionality, for the
class of objects.

2. The method according to claim 1, wherein the variable
projection comprises a random, or pseudorandom, projec-
tion.

3. The method according to claim 1, wherein generating
the set of projected vectors comprises generating a plurality
of sets of projected vectors of the second dimensionality by
applying each of a plurality of variable projections to each
feature vector in the set of feature vectors.

4. The method according to claim 3, wherein processing
the set of projected vectors comprises processing each of the
plurality of sets of projected vectors to generate a plurality
of models for the class of objects.

5. The method according to claim 4, wherein applying the
projection to the model comprises applying a projection to
each of the plurality of models to generate a plurality of
object classification models, of the first dimensionality, for
the class of objects.

6. The method according to claim 4, comprising testing
each model of the plurality of models and indicating an
accuracy value for each model based on the testing.

7. The method according to claim 6, comprising selecting
a subset of the plurality of models based on the accuracy
values of the models.

8. The method according to claim 7, comprising applying
a projection to each model in the subset of the plurality of
models to generate a plurality of object classification mod-
els, of the first dimensionality, for the class of objects.

9. The method according to claim 1, wherein the process-
ing the set of projected vectors to generate a model for the
class of objects uses a linear classification model.
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10. The method according to claim 9, wherein the linear
classification model comprises at least one of:

a support vector machine;

a two neuron classifier; or

a Fisher discriminant.

11. The method according to claim 1, the image data being
captured by an image sensor.

12. The method according to claim 11, the image data
representing at least part of one or more images, wherein
each of the one or more images comprises an object of the
class of objects, wherein the image data is processed by a
feature extractor to produce the image data comprising the
set of feature vectors corresponding to the class of objects.

13. The method according to claim 1, wherein receiving
the image data comprises:

capturing image data representing at least part of an image

using an image sensor;

on receiving an indication from an object detector that the

image comprises an object of the class of objects,
tracking the object and capturing, using the image
sensor, image data corresponding to video frames com-
prising the object; and

processing the image data using a feature extractor to

produce the image data comprising the set of feature
vectors corresponding to the class of objects.

14. A non-transitory, computer-readable storage medium
comprising a set of computer-readable instructions stored
thereon which, when executed by at least one processor,
cause the at least one processor to:

receive image data comprising a set of feature vectors of

a first dimensionality, the feature vectors corresponding
to a class of objects;

generate a set of projected vectors of a second dimen-

sionality, lower than the first dimensionality, by apply-
ing a variable projection to each feature vector in the set
of feature vectors;

process the set of projected vectors to generate a model

for the class of objects; and

apply a projection to the model to generate an object

classification model, of the first dimensionality, for the
class of objects.

14

15. A computer vision apparatus comprising a classifier,
the classifier comprising at least one of a plurality of object
classification models generated by:

receiving image data comprising a set of feature vectors

5 of a first dimensionality, the feature vectors corre-
sponding to a class of objects;
generating a set of projected vectors of a second dimen-
sionality, lower than the first dimensionality, by apply-
ing a variable projection to each feature vector in the set
of feature vectors;
processing the set of projected vectors to generate a model
for the class of objects; and
applying a projection to the model to generate an object
classification model, of the first dimensionality, for the
class of objects.
16. The computer vision apparatus according to claim 15,
comprising a feature extractor configured to:
receive image data representing at least part of an image;

20 and

produce image data comprising a plurality of feature
vectors.

17. The computer vision apparatus according to claim 16,

5 comprising an image sensor, wherein the image data repre-

senting at least part of an image is captured by the image
sensor.

18. The computer vision apparatus according to claim 16,
wherein the classifier is configured to:
30 process the image data comprising the plurality of feature

vectors; and

determine, using the at least one of the plurality of object
classification models, whether the image data com-
prises an object in the class of objects corresponding to

» the object classification models.

19. The computer vision apparatus according to claim 18,
wherein the classifier is configured to indicate whether the
image data comprises an object in the class of objects

4o corresponding to the object classification models.
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