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Abstract 

The performance of Self-Organizing Map (SOM) algorithm is dependent on the initial 

weights of the map. The different initialization methods can broadly be classified into random 

and data analysis based initialization approach. In this paper, the performance of random 

initialization (RI) approach is compared to that of principal component initialization (PCI) in 

which the initial map weights are chosen from the space of the principal component.  

Performance is evaluated by the fraction of variance unexplained (FVU). Datasets were 

classified into quasi-linear and non-linear and it was observed that RI performed better for 

non-linear datasets; however the performance of PCI approach remains inconclusive for 

quasi-linear datasets.  

 

Introduction 

Self–Organizing Map (SOM) can be considered as a nonlinear generalization of the principal 

component analysis [14] and has found much application in data exploration especially in 

data visualization, vector quantization and dimension reduction.  Inspired by biological 

neural networks, it is a type of artificial neural network which uses unsupervised learning 

algorithm with the additional property that it preserves the topological mapping from input 

space to output space making it a great tool for visualization of high dimensional data in a 

lower dimension.  Originally developed for visualization of distribution of metric vectors 

[12], SOM found early application in speech recognition. 

However, like clustering algorithms, the quality of learning of SOM is greatly influenced 

by the initial conditions:  initial weight of the map, the neighbourhood function, the learning 

rate, sequence of training vector and number of iterations. [1][12][11]. Several initialization 

approaches have been developed and can be broadly grouped into two classes: random 

initialization and data analysis based initialization [1]. Due to many possible initial 

configurations when using random approach, several attempts are usually made and the best 

initial configuration is adopted. However, for the data analysis based approach, certain 

statistical data analysis and data classification methods are used to determine the initial 

configuration; a popular method is selecting the initial weights from the same space spanned 

by the linear principal component (first eigenvectors corresponding to the largest eigenvalues 

of the empirical covariance matrix). Modification to the PCA approach was done by [1] and 

over the years other initialization methods have been proposed. An example is given by [4].  

In this paper we consider the performance in terms of the quality of learning of the SOM 

using the random initialization (RI) method (in which the initial weight is taking from the 

sample data) and the principal component initialization (PCI) method. The quality of learning 

is determined by the fraction of variance unexplained [8].  To ensure an exhaustive study, 

synthetic data sets distributed along various shapes of only 2-dimensions are considered in 

this study and the map is 1-dimensional. 1 Dimension SOM is very important, for example, 

for approximation of principal curves. The experiment was performed using the PCA, SOM 

and GSOM applet available online [8]. 
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All learning done on data set using the two initialization approaches have been done with 

the same neighbourhood function and learning rate, this is to ensure that the two methods are 

subject to the same conditions which could influence the learning outcome of our study. To 

marginalize the effect of the sequence of training vectors, The applet adopts the batch 

learning SOM algorithm [10][12][4][5] described in detail in the next Section. For the 

random initialization approach, the space of initial starting weights was sampled; this is 

because as the size of the data size n increases, the possible initial starting configuration for a 

given K (the number of nodes) becomes quite enormous (n
k
). The PCI was done using regular 

grid on the first principal component with equal variance [8]. for each data set and 

initialization approach, the data set was trained using three or four different values of K. Also 

the idea of quasi-linear model was also presented. 

 

 2 Background 

 

2.1 SOM Algorithm 

The SOM is an artificial neural network which has a feed-forward structure with a single 

computational layer. Each neuron in the map is connected to all the input nodes. 

The on-line SOM algorithm as proposed by Kohonen can be summarised as follows: 

1) Initialization:  An initial weight is assigned to all the connection. Wj(0) 

2) Competition: all nodes compete for the ownership of the input pattern. Using the 

Euclidean distant as criterion, the neuron with the minimum-distance wins. 
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where x (k) is the input pattern at time k 

3) Cooperation: the winning neuron also excites its neighbouring neurons (topologically 

close neurons).  An example of neighbourhood function often used is the Gaussian 

neighbourhood function, 
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where )(k  is a monotonically decreasing learning factor at time (k), ri  is the position 

of node i. 

4) Learning Process (Adaptation): The winning neuron and the neighbours are adjusted 

with the rule given below: 

 

)]()()[()()()1( * kwkxkkkwkw jjjj . 

 

Hence, the weight of the winning neuron and its neighbours are adjusted towards the 

input patterns however the neighbours have their weights adjusted with a value less 

than the winning neuron. This action helps to preserve the topology of the map.   

As ,k  .0)(* ki  

 

2.3 The Batch Algorithm 

We use the batch algorithm of the SOM learning. This is a variant of the SOM algorithm 

in which the whole training set is presented to the map before the weights are adjusted with 

the net effect over the samples. The algorithm is given below [13]. 

 

1) Present an input vector and find the winner neuron, which is the weight vector closest 

to the input data. 



5 

 

 

}||{||minarg 2ji
i

j xwC  

2) Repeat step 1 for all the data points in the training set. 

3) Update all the weights as follows 
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where )( jic  is the neighborhood function around the winner cj and k is the number of 

iteration. 

 

 

2.3  SOM learning algorithm used by the applet  

Before learning, all Ci are set to the empty set (Ci=∅), and the steps counter is set to 

zero.  

1. Associate data points with nodes (form the list of indices Ci={l:||xl-yi||
2
≤ ||xl-yj||

2
 

∀i≠j}).  

2. If all sets Ci, evaluated at step 1 coincide with sets from the previous step of learning, 

then STOP.  

3. Add a new record to the learning history to place new coding vectors locations.  

4. For every node, calculate the sum of the associated data points: zi=∑j∈Cixj. If Ci=∅ 

then zi=0.  

5. Evaluate new locations of coding vectors.  

1. For each node, calculate the weight Wi=∑hij|Cj| (here, hij is the value of the 

neighbourhood function.)  

2. Calculate the sums Zi=∑hijzj.  

3. Calculate new positions of coding vectors: yiv←Zi/Wi if Wi≠0. If Wi=0 then yi 

does not change.  

6. Increment the step counter by 1.  

7. If the step counter is equal to 100, then STOP.  

8. Return to step 1.  

 
Fig. 1. The B-spline neighbourhood function with hmax=3. 

 

The neighbourhood function used for this applet has the simple B-spline form given as a B-

spline with hmax=3 (Fig. 1): 1-hij=|i-j|/(hmax+1) if |i-j|≤hmax and hij=0 if |i-j|>hmax  
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2.4 Fraction of Variance Unexplained.  

For this applet, data are approximated by broken lines (SOM) [8].  The dimensionless least 

square evaluation of the error is the Fraction of Variance Unexplained (FVU). It is defined as 

the fraction: [The sum of squared distances from data to the approximating line /the sum of 

squared distances from data to the mean point].  

The distance from a point to a straight line is the length of a perpendicular dropped from 

the point to the line. This definition allows us to evaluate FVU for PCA. For SOM we need to 

solve the following problem. For the given array of coding vectors {yi} (i=1,2, ... m) we have 

to calculate the distance from each data point x to the broken line specified by a sequence of 

points {y1, y2, ... ym}. For the data point x, its projection onto the broken line is defined, that 

is, the closest point. The square of distance between the coding vector yi and the point x is 

di(x)=||x-yi||
2
 (i=1,2, ... m). 

Let us calculate the squared distance from the data point x to the segment [yi, yi+1] (i=1,2, 

... m-1). For each i, we calculate projection of a data point onto a segment. li(x)=(x-yi , yi+1-yi ) 

/||yi+1-yi||
2
  (see figure 2). 

If 0<li(x)<1 then the point, nearest to x on the segment [yi, yi+1], is the internal point of the 

segment. Otherwise, this nearest point is one of the segment's ends. 

Let 0<li(x)<1 and c be a projection of x onto segment [yi, yi+1]. Then ||c - yi||
2
=(li(x)||yi-

yi+1||)
2
 and, due to Pythagorean theorem, the squared distance from x to the segment [yi, yi+1] 

is ri(x)=||x-yi||
2
-(li(x) ||yi-yi+1||)

2
. 

Let d(x)=min{di(x) | i=1,2, ... m} and r(x)=min{ri(x) | 0< li(x) <1, 0< i< m }. Then the 

squared distance from x to the broken line specified by the sequence of points {y1, y2, ... ym} 

is D(x)=min{d(x), r(x)}. 

For the given set of the data points xj and the given approximation by a broken line, the 

sum of the squared distances from the data points to the broken line is S=∑jD(xj), and the 

fraction of variance unexplained is S/V, where V=∑j(xj - X )
2
 and X is the empirical mean: 

X=(1/n)∑xi. 

 
Fig. 2. A distance from a point to a segment: two versions of the projection. 

 

2.5 Initialization Methods 

As earlier stated, the objective of this paper is to consider the performance of two 

different initialization methods for SOM using the fraction of variance unexplained as the 

criterion for measuring the performance or quality of learning. The two initialization methods 

compared are: 

 PCA initialization (PCI): The weight vectors are selected from the subspace spanned 

by the first n principal component. And for this study the weight vectors are chosen as 

a regular grid on the first principal component with equal variance. Therefore given 

the number of weight vectors K, the behaviour of SOM using PCA initialization as 

described above is completely deterministic and also results in only one configuration.  

PCA initialization does not take into account the distribution of linear projection 

result and could produce several empty cells leading to the need for a reconstitution 
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algorithm [1]. However according to [13], since the initialization is approximately 

organized, SOM computation can be made order of magnitude faster. 

 Random Initialization (RI):  This method is very easy to implement, K weight vectors 

are selected randomly from the data points. Hence the possible size of initial starting 

configuration given a dataset of size n is given by n
k
. However, given an initial 

configuration, the behaviour of the SOM becomes completely deterministic. 

 

2.6 Linear, Quasi-Linear and Non-Linear models. 

Data sets can be modelled using linear or non-linear manifold of lower dimension. 

According to [5] a class of non-linear data set was identified which could be modelled by 

quasi-linear model. In this study, data sets will be classified as quasi-linear or non-linear. 

To determine if a linear or non linear model is appropriate for modelling a data set, see 

the non-linearity test for PCA [6]  

 

Linear Model - data set is said to be linear if it could be modelled using a sequence of 

linear manifolds of small dimension (in 1D case, they can be approximated by a straight line 

with sufficient accuracy).  These data can be easily approximated by the principal 

components. This class of data was not studied in this paper.  

 

Quasi-linear Model – A dataset is called quasi-linear [5] if the principal curve 

approximating the dataset can be univalently projected on the linear principal component. It 

should be noted that the principal manifold is projected to the lines and not the nodes. For this 

study, dataset which falls in the border between non-linear and quasi-linear with in which 

over 50% of the data can be classified as quasi-linear is also classified as quasi-linear. See 

examples in figure 3a and 3c.   

 

Non linear Model – For the purpose of this paper, essentially nonlinear datasets which 

do not fall into the class of quasi-linear datasets will be classified simply as nonlinear. See 

example in figure 3b. 

 

      
 

Fig. 3. (a) Quasi-linear data set; (b) nonlinear data set; (c) a border case between non-linear 

and quasi-linear dataset. The first principal component approximations are shown (red 

online). 

 

  

(a) (b) (c) 
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3 Experimental Results 

 

Using the SOM applet, the performance of both initialization methods on datasets with 

data distributed along different shapes (see figure 4) was studied at values of K = 10, 20, 50 

(unless otherwise stated).  

 

3.1 Drawing up the Probability Distribution of FVU 

For the PCI as mentioned earlier, its yield just one initial configuration given K (this is 

because equidistant nodes are selected from the subspace of principal component such that 

the variances are equal).  

In drawing up the probability distributions for the RI method, a sample of 100 initial 

configurations from the space of possible initial configurations for each dataset and each 

value of K was taken and the resulting FVU computed. The probability distribution of the 

FVU was described in terms of mean, median, standard deviation, minimum and maximum 

(see Table 3 in Appendix).   

 

3.2 Results 

As observed from the histogram (figure 5), and also the result of normality check carried out 

on the distributions, most of the distribution are not normal except for a few. 

In order to compare the performance of the two initialization approaches in terms of the 

FVU, We consider the proportion estimate of RI which performs better than PCI and draw 

inferences. This is because for a given value of K, the PCI has only one configuration while 

the random method has a distribution. Therefore, from the distribution of FVU for RI, the 

proportion of FVU with values that are smaller than that of PCI (i.e. the proportion of RI in 

which the SOM map outperformed PCI in terms of FVU) was recorded and an interval 

estimate of the population proportion (using the adjusted Wald method) at confidence level of 

95% was also computed.  However, for cases where the sample proportion are extreme (i.e. 

proportion close to 0 or 100), the point estimate using the Laplace method was calculated. 

See Table 1 
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a) Horseshoe dataset 
 

 
b) Horseshoe dataset with Scatter 
 

 
c) S shaped dataset 
 

 
d) S dataset  with Scatter 

 

 
e) Tree dataset 

 
f) Y shaped dataset 

 

 
g) C Shaped dataset  
 

 
h) C shaped dataset with scatter 
 

 
i) Spiral dataset 

 

 
j) Spiral dataset with Noise 

 
  

Fig. 4. (a-j) Data sets for the case study. 
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(a1) SOM approximation using 10 Nodes 

 

 
 

(a2) SOM approximation using 20 Nodes 

 

 
 

(a3) SOM approximation using 50 Nodes 

 

Fig 5(a1-a3). Spiral Data Set 

 
(b1) SOM approximation using 10 Nodes 

 

 
(b2) SOM approximation using 20 Nodes 

 

 
(b3) SOM approximation using 50 Nodes 

 

Fig 5(b1-b3). Spiral Data Set with Noise 
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(c1) SOM approximation using 10 Nodes 

 

 
(c2) SOM approximation using 20 Nodes 

 

 
(c3) SOM approximation using 50 Nodes 

 

Fig 5(c1-c3). Horse Shoe Data Set 

 
(d1) SOM approximation using 10 Nodes 

 

 
(d2) SOM approximation using 20 Nodes 

 

 
(d3) SOM approximation using 50 Nodes 

 

 
SOM approximation using 100 Nodes 

 

Fig 5(d1-d4). Horse Shoe Data Set with 

Scatter 
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(e1) SOM approximation using 10 Nodes 

 

 
(e2) SOM approximation using 20 Nodes 

 

 
(e3) SOM approximation using 40 Nodes 

 

 

Fig 5(e1-e3). S shape Data Set 

 

 
(f1) SOM approximation using 10 Nodes 

 

 
(f2) SOM approximation using 20 Nodes 

 

 
(f3) SOM approximation using 40 Nodes 

 

Fig 5(f1-f3). S shape Data Set with 

Scatter 
 

 

  



13 

 

 
(g1) SOM approximation using 10 Nodes 

 

 
(g2) SOM approximation using 20 Nodes 

 

 
(g3) SOM approximation using 30 Nodes 

 

Fig 5g(1-3) C shape Data Set  
 

 
(h1) SOM approximation using 10 Nodes 

 

 
(h2) SOM approximation using 20 Nodes 

 

 
(h3) SOM approximation using 30 Nodes 

 

 

Fig 5h(1-3). C shape Data Set with 

scatter 
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(i1) SOM approximation using 10 Nodes 

 

 
(i2) SOM approximation using 20 Nodes 

 

 

 

 

 

 

 

 

 
(i3) SOM approximation using 50 Nodes 

 

 
(i4) SOM approximation using 100 Nodes 

 

  

Fig 5. Histograms of FVU for approximation of various datasets by 1D SOM 

with different numbers of nodes and Random Initiation. The values of FVU for 

the PCA initiations for the same dataset and number of nodes are highlighted by 

vertical lines and arrows    (red online). 

Fig 5i(1-4). Tree shape Data Set 
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Table 1. The proportion estimate of RI which performs better than PCI for various datasets 

and numbers of nodes 

Dataset K 
% better than 
PCI 

Confidence Interval 

(%) at confidence 
level of 95% Classification 

Spiral 3 10 41%  31.86 - 50.80 Nonlinear 

  20 55%  45.24 - 64.39 Nonlinear 

  50 1%  0 - 1.96 Nonlinear 

          

Spiral 3 With Noise 10 49%  39.42 - 58.65 Nonlinear 

  20 95%  88.54 - 98.13 Nonlinear 

  50 84%  75.47 - 90.01 Nonlinear 

          

          

Horse shoe 10 73%  65.53 - 80.77 Nonlinear 

  20 95%  88.54 - 98.13 Nonlinear 

  50 100%  99.02 - 100 Nonlinear 

          

Horse shoe with 
scatter 10 74% 64.58 -  81.64 Nonlinear 

  20 89%  81.21 - 93.91 Nonlinear 

  50 100%  99.02 - 100 Nonlinear 

  100 99%   Nonlinear 

          

Tree 10 76%  66.71 - 83.36 Nonlinear 

  20 10%  5.35 -  17.61 Nonlinear 

  50 67%  57.28 - 75.46 Nonlinear 

  100 100%  99.02-100 Nonlinear 

          

S Shape 10 36%  27.26 - 45.78 Quasi-linear 

  20 7%  3.20 - 13.98 Quasi-linear 

  50 7%  3.20 - 13.98 Quasi-linear 

          

S Shape with scatter 10 48%  38.46 – 57.68 Quasi-linear 

  20 9%  4.62 – 16.42 Quasi-linear 

  50 11%  6.09 - 18.79 Quasi-linear 

          

C Shape 10 100%  99.02-100 Quasi-linear 

  20 33%  24.54 - 42.72 Quasi-linear 

  30 13%  7.62 -  21.12 Quasi-linear 

          

C shape with scatter 10 73%   65.53 - 80.77 Quasi-linear 

  20 8%  3.90 – 15.21 Quasi-linear 

  30 72%  62.48 – 79.90 Quasi-linear 
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3.3 Analysis of Performance. 

From the result above, it could be concluded that RI tend to perform quite well for nonlinear 

datasets. Very interesting result was obtained for the spiral dataset (Fig. 5a,b). For 10 nodes, 

41% of RI realisations give better value of FVU than PCI, for 20 nodes this percent increases 

to 55% but for 50 nodes PCI gives better result than 99% of RI (Fig 5a3). We can conjecture 

that the SOM learning dynamics has many Stable Steady States SOMs (SSSSOMs). 

Sometimes the PCI can hit into a basin of attraction of a SSSSOM with low value of FVU. 

We have no different possible explanation of the surprising result presented in Fig 5a3. 

It can be observed in Fig. 5b that the presence of noise affects the performance of the 

initialization methods. In particular, the surprisingly good performance of PCI of Fig 5a3 is 

destroyed by noise (Fig 5b3), and with noise the relative performance of PCI monotonically 

decreases with the number of nodes. In general, we can conclude that for essentially 

nonlinear datasets PCI performs not better or even worse than the median of RI. The role of 

noise will be discussed later. However, the performance of RI is inconclusive as regards 

quasi-linear datasets. While the performance was good for the S shaped dataset the 

performance for the C shape was not as expected. For the approximation of the C shaped 

dataset by 1D SOM with 10 nodes all the results of RI were better than PCI gives (see Table 

1). Nevertheless, it should be mentioned that the difference between the values of FVU for 

this case is rather small (Fig. 5g1). It does not exceed 4% of the minimal value of FVU (see 

Fig. 5g1). In that sense, the performance of PCI almost coincides with the quality of RI for 

example from Fig. 5g1. 

Further analysis was performed to determine factors that could influence the performance 

of the initialization methods. By considering the effect of the under listed factors on the 

proportion of RI that outperforms PCI and using regression analysis the following were 

observed: 

a) Increase in Nodes (K):   there was no relationship that could be established which 

indicates that increase in K significantly influence the performance of RI compared to 

PCI 

b) Number of unique final configuration in sample: Even though the number of unique 

final configuration in the population is not well defined, however there is a significant 

correlation between the number of unique final configuration in the sample and the 

performance of RI for quasi-linear datasets. This correlation however does not exist 

for non-linear data. See the result in table 2 below for quasi-linear datasets (and the 

raw data in Table 4 in Appendix).  
 

Table 2. The correlation between the number of unique final configuration in the 

sample and the performance of RI for quasi-linear datasets in the case study. 

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .713 .121  5.911 .000 

Unique -.010 .003 -.749 -3.576 .005 

a. Dependent Variable: Proportion 

c) Increase in the data points (N): increase in N does not significantly influence the 

performance of RI compared with PCI.  
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d) Presence of noise: It was observed that the presences of noise in the spiral dataset tend 

to influence the performance of PCI. Further studies show that the presence of noise 

in quasi-linear data sets affects the performance of PCI. This is because noise can 

affect the principal component and also the principal curve of the dataset, which can 

affect the classification of dataset especially for quasi-linear datasets. An illustration 

is given in figure 6.  

 
 

 

Fig. 6. (a) S shaped dataset (it is almost qualilinear). S shape dataset with noise (it becomes 

essentially nonlinear). The straight lines are the first principal component approximations 

(blue online). 
 

4. Conclusion 

It is widely known that the quality of SOM map is influenced by initial weight of the map.  

This study seeks to compare the performance of random initialization method and principal 

component initialization method using the SOM batch algorithm on datasets which has been 

classified as quasi-linear and non-linear. Datasets with data distributed along different shapes 

was studied and the performance was evaluated by fraction of variance unexplained. By 

comparing the proportion of final SOM map of RI which outperformed PCI under the same 

conditions, it was observed that RI performed quite well for non-linear data sets. However for 

quasi-linear datasets, the result remains inconclusive. In general, we can conclude that the 

hypothesis about advantages of the PCI is definitely wrong for essentially nonlinear datasets. 
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Appendix 

 

Table 3. The distribution of FVU for RI. (The last column is FVU for PCI) 

Dataset K Mean Std Min Max PCI 
Spiral 3 10 13.81 2.117 11.38 20.37 11.43 

 
20 3.31 0.93 1.98 6.25 3.26 

 
50 0.44 0.19 0.12 6.25 0.13 

       Spiral 3 
With 
Noise 10 19.24 1.84 7.47 24.74 18.52 

 
20 6.92 0.93 5.95 11.01 8.65 

 
50 2.4 0.22 1.81 2.87 2.61 

       Horse 
shoe 10 16.51 2.86 12.03 26.43 17.12 

 
20 3.55 1.33 1.81 7.23 5.99 

 
50 0.35 0.16 0.11 0.993 1.32 

       Horse 
shoe 
with 
scatter 10 16.52 2.45 12.76 23.23 18.27 

 
20 4.6 1.09 2.93 7.32 6.15 

 
50 1.31 0.15 0.59 1.73 1.91 

 
100 0.72 0.06 0.57 0.88 0.86 

       
       Tree 10 21.17 1.83 18.76 27.12 21.72 

 
20 9.94 1.04 8.19 14.08 8.66 

 
50 2.09 0.34 1.4 3.03 2.21 

 
100 0.52 0.15 0.28 1.01 1.01 

       
       S Shape 10 12.89 0.54 12.73 15.38 12.76 

 
20 3.96 0.84 2.34 6.42 2.37 

 
50 0.73 0.25 0.19 1.41 0.35 

       S Shape 
with 
scatter 10 13.04 0.01 13.03 13.05 13.03 

 
20 3.91 0.87 2.51 5.99 2.52 

 
50 0.78 0.24 0.41 1.35 0.46 

       C Shape 10 4.28 0.07 4.22 4.35 4.35 

 
20 1.19 0.48 0.75 2.9 0.88 

 
30 0.53 0.19 0.21 1.24 0.31 

       C shape 
with 
scatter 10 11.41 3.05 9.7 21.94 9.78 

 
20 4.04 0.67 3.08 6.56 3.13 

 
30 2.02 0.15 1.66 2.4 2.07 
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Table 4. Number of unique final configuration in the sample  

and the relative performance of RI versus PCI  

for quasi-linear datasets in the case study. 

 

% of PCI greater than RI Unique final  configuration 

100.00% 2 

33.00% 34 

13.00% 47 

73.00% 11 

8.00% 50 

72.00% 47 

36.00% 11 

7.00% 67 

7.00% 65 

48.00% 2 

9.00% 49 

11.00% 58 
 

 


