!'_ Principal Component Analysis

How to Simplify and Visualise
Data Sets



i Plan

= Data sets
= Curse of Dimensionality
= Struggle with Complexity

= Data sets approximation by lines and
planes

= Least square definition of mean point

= Least Square” definition of the first
principal component




i Plan

= Empirical covariance matrix

= Principal components are eigenvectors
of empirical covariance matrix

= PCA scheme
= Eigenfaces and Eigenmuzzles



+

Principal components analysis (PCA)
is a technique used to reduce
multidimensional data sets to lower
dimensions for analysis. Depending on

the field of application, it is also named:
(i) the discrete Karhunen-Loeve transform,
(ii) the Hotelling transform or

(ii1) proper orthogonal decomposition (POD).



http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/w/index.php?title=Kari_Karhunen&action=edit
http://en.wikipedia.org/wiki/Michel_Lo%C3%A8ve
http://en.wikipedia.org/wiki/Harold_Hotelling

5L Everybody is a Vector

Here is a dataset

age | employme education

38| 5tate_gaov Bachelors
51/ 5elf_emp_| Bachelors
39 Privats HS _prad
54 Privats 11th

28 Privats Bachelors
38 Privale Mastars
A0 Private Eith

82| 5elf_emp_|HS_grac
31 Privats Masters
22 Privats Bachelors
A7|Private  |Some_goll

30/ 5tate_gaov Bachelors

24 Private Bachelors
33 Private Asgsac_ac
<1 Private Assac v
3 \Private  |Tth_Ezh

26 Zelf emp HE grad
33|Private  |HS_grao
38 Privats 11th

24 Self emp Mastars
<1 Private Dociorate

gdur marital

12| Never_mar ...

13 Marmed
8| Diwxrzed
7|Mamead

13 Mamed

14 Marri=d

£ Marned_sg

2 Marmead

14 Mever_mar ...

13 Marned
10 Marrizd
13 Marmead

12| Never_mar ...
12 Mewver_mar ...

11/ Mamsd
4 Mamesd

B Never_mar ...
B Mewver_mar ...

7|Marmead
14| Divorced
16 Mammsd

[T ] relatiocn | race

Adm_clens Nob_in_fan White
Exec_mar husband Whie
Handlers_« Net_in_fan Whita
Handlers_« busbanz | Slack
Prof_speci Wife Slack
Exac_mar Wife White
Other_sen hoi_in_fan Slack
Exec_mar husband Whie
Prof_speci Met_in_fan Whita
Exec_mar husbanz |Whita
Exac_mar Husband Slack
Frof_speci Husbano  Asian
Adm_clen Own_chile White
Sales Mot_in_fan Slack
Craft_repa Husbanz Asian

Transport_ Busbanz | Amer_indi;

Farming_fi Owm_child W hita
Maching_t Unmarned W hite
Sales RHusbang | White
Exzc_mar Unmarrizd Whita
Praf_speel buskana |Whita

gender | houn country

M ale
M ale
Male
Male
Female
Fzmale
Fzmale
Pl ale
Femals
Male
Pl ale
Pl ale
Fzmalz
Male
Kale
Male
P ale
Pl ale
Pl ale
Femalz
Kale

wealth

40| United_51z poar
13| United_51: poar
40 United_5t: poar
a0 United_5t: poar
&/ Cuba poar
40| United_51: poar
16| Jamaica |poar
25| United_51: nich
50 United_5t: nich
20 United_5t: nch
80| United_S1z rich
&0 India nzh
40| United_51: poar
50/ United 5tz poar
20 "Miszing V' nzh
25 Maxica | poor
35 United_51: poar
20| United_51: poar
A0 United_51: poar
45 United_St: rich

gl United 5tz nzh




How transform them
into vectors?




i Curse of dimensionality

Curse of dimensionality (Bellman 1961)
refers to the exponential growth of
complexity as a function of dimensionality.

And what to do if dim>10007?

Y3




Two Main Tricks in our
Struggle with Complexity

A "minimal”
with this
interesting content

space

A large space
with something
interesting inside

O

In high dimensionality many
different things become similar, if we
choose the proper point of view




A 3D representation
‘L of an 8D hypercube

Self-simplification in large dim

The body has the same
radial distribution and the
same number of vertices
as the hypercube.

A very small fraction of the

T_ ——  mass lies near a vertex.

Also, most of the interior
iS void.
(Hamprecht & Agrell, 2002)



‘ Karl Pearson, 1901

" 1II. On Lines and Planesof Closest Fit to Systems of Points
= -"'r 'd r . ' '

in Space. By KarL PearsoN, FLR.S., University College,

London .
1) IN many physical, statistical, and biological investi-
) gations it is desirable to represent a system of
soints in plane, three, or higher dimensioned space by the
< pest-fitting 7 straight line or plane.  Analytically this
consists in taking

y=ay+ap, or z=g,tax+by,
or Z=Qy+aryt+dpTq+ a3+ ...+ a,7,,

where v, 2, 2, &y, &y, . .. &a are variables, and determining the
“ best ”” values for the constants a,, a,, by, a,, ay, as, as, . . . an

in relation to the observed corresponding values of the
variables.  In nearly all the cases dealt with in the text-books



Data approximation by a straight
line. The illustration from Pearson’s

paper

2 .
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f & i

g
£
Z
%



The closest approximation=
iThe widest scattering of projections

15t Principal
axis

> .
35& RN 2”0_' principal
> axis



o

X; —datapoints i =1,2.m
Xi; — coordinates of datapoints, J =1,...n



“Least Square” definition of
i mean point

A2 =X, ~Y|? - min, Y=?
i=1

Az :izn:(xu _Yj )2 —> m|n,
i=1 j=1

ﬁ:—Zi(xij —Yj)=—2£(_§xij]—ijj:O;

oY i1

Y= T3 X, Y=13 X =(X
=X Y= 2 Xi=(X)



i Centralisation

Let us centralise all data:
Mean Point=The Origin

Xi = X, —<X>




“Least Square” definition of
i the first principal component

X; —datapoint

e; —nhormalised vector
181, %)

pi2 = (Xj —e1(e1, Xj), Xj —e1(e1, Xj))



“Least Square” definition of
‘L the first principal component.2

m m
A = 2> pi” = 2 (Xi —ey(e1, X;), Xj —e1(e, X)) > min; e, =7?
i=1 i=1

INE i(xi —ey(e1, Xj), Xj —ey1 (81, X)) =
=1

= i(xiixi)_zi(xi 8;)° +§:(Xi 8)% = i(xiixi)_i(xi e)%;
i1 i1 i1 i1 i1

m
3 (Xi,6)° > max, e, =?
i=1

Theorem: The closest approximation=The widest scattering of projections



“Least Square” definition of
the first principal component.3

Theorem: The closest approximation=The widest scattering of projections

m
Y (Xi,6)° > max;, e, =2
=

2
> (Xi.,e1)° =Z£2XijeljJ :Z[ injeljxikelk]:
i1

i=1{ j=1 i1\ j k=1

=1

= Zn: elj[ixijxikjelk =m(e;, C(X)ey),
j k=1

m
where C(X)—empirical covariance matrix : C(X) j, = iz Xij Xik
Mz



Properties of empirical
i covariance matrix

1 m
C(X) jk ==2_ XijXik
Miz
1. C(X) Is symmetric: C(X)jk = C(X)kj ;

2.C(X)Is positivedefinite : (e,C(X)e) > 0.

m
Indeed, (e, C(X)e) = > (X;,e)* >0

i=1
Hence, eigenvalue s of C(X) are non - negative real numbers,
M2 24,20



Principal components are eigenvectors
‘-L of empirical covariance matrix. 1

1 m
CX)jk == Xjj Xik
Mi_

Eigenvalues of C(X)are non-negativereal numbers, 4, > 4, >..4, > 0;
Vq,V,,..V, arethecorresponentorthonormbeigenvectas.

m m
Wearelookingfore, =Y eivi, e =(e1,v;), Y& =1
i=1 i=1

C(X)e, = iﬁiC(X)Vi :igli/liVii
i1

=1

m m
(e1,C(X)e) = &t 4 — maxunder conditionZgli2 =1
i=1 i=1

Letfirsteigenvalues be different4, > 4, > ...

In thiscase, e =1, &; =0(i>1), e =%V,



Principal components are eigenvectors
of empirical covariance matrix. 2

= Centralise data;

= Subtract projection on the first eigenvector;
= Solve the same minimisation problem again
= — and immediately get: e,=v,

= [terate!



i Principal components analysis

Calculate the empirical mean
Calculate the deviations from the mean
Find the covariance matrix

Find the eigenvectors and eigenvalues of the covariance
matrix

Rearrange the eigenvectors and eigenvalues

Compute the cumulative energy content for each
elgenvector

Select a subset of the eigenvectors as low-dimensiona basis
vectors

Project the data onto the new basis




