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Chemical reaction networks

Number of species: n

Number of reactions: r

Number of complexes: m

Stoichiometric mechanism:
n∑

i=1

αijAi ⇄

n∑

i=1

βijAi for j = 1, ...r (1)

where
• αij , βij ∈ N are the constant stoichiometric coefficients for specie Ai in the

reaction step j.
• The linear combinations of species (i.e. the terms

∑n

i=1
αijAi) in (1) are

called the complexes of the reaction network and denoted by c1, . . . , cm.
Reaction network :
Species: S = {A1, . . . ,An}
Complexes: C = {c1, . . . , cm}
Reactions: R ⊂ C × C



- p. 4/18

Mass action reaction kinetics

The reaction rate obeys the Mass Action Law, therefore it can be expressed
as:

Wj(x) = kmn

n∏

i=1

x
αij

i − knm

n∏

i=1

x
βij

i (2)

where xi denotes the concentration of species (state variables) and kmn, knm ∈ R
+

are the rate constant of the direct and inverse reaction rates of the j-th reaction step

between complexes cm and cn.
Irreversible steps: choosing the appropriate k-s to be zero.

dx

dt
= NW (x) (3)

where

N = Nα −Nβ (4)

where

[Nα]ij = αij , [Nβ ]ij = βij , i = 1, . . . , n, j = 1, . . . , r (5)
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The reaction graph of a reaction network

• (Weighted) directed graph
D = (Vd, Ed), where
Vd = {c1, c2, . . . cn}: finite nonempty set of vertices (the complexes)
Ed: finite nonempty set of directed edges (reactions), (ci, cj) ∈ Ed if
complex ci is transformed to cj

Weights: reaction rates, i.e. kij can be assigned to (ci, cj)

• Undirected graph
U = (Vu, Eu), where Vu = Vd and the undirected edge (ci, cj) ∈ Eu if
(ci, cj), (cj , ci) ∈ Ed
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Cascade activation reactions

In the following a set of enzymatic reaction levels, where the product of a higher level

acts as an enzyme in the next reaction level will be called cascade activation
reaction .

The most simple reaction scheme of cascade activation can be seen in figure 6.

E

S1 P1

S2 P2

E+S1 ES1 P1+E

P1+S2 P1S2 P1+P2

The activation scheme and reaction graph of the cascade activation reaction. The

dashed lines denote the reversible case



- p. 7/18

The variable lumping transformation in linear case

dx

dt
= Ax + Bu y = Cx

Applied to variables with similar behavior: xj = Kxl

xj , xl → x̂j x̂j =
xj+xl

2

System parameters:
For i, k 6= j, l:

âik = aik b̂ik = bik ĉik = cik

and for all elements with index j:

âjk =
ajk + alk

2
b̂jk =

bjk + blk

2

âjj =
K(ajj + ajl) + (ajl + all)

K + 1

âij =
2Kaij + 2ail

K + 1
ĉij =

2Kcij + 2cil

K + 1
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Nonlinear lumping of cascade activation reactions

The original system is described by the following reactions:

The basic idea is to shorten the way between the beginning and the end of the
signaling path (E → P1 → P2), and eliminate the intermediate component in a way,

which approximately preserves the dynamic properties of the system, as it can be
seen in the right sub-figure of figure 1.

Original Lumped

E

S1 P1

S2 P2

E

S1 P

S2

E+S1 ES1 P1+E

P1+S2 P1S2 P1+P2

E+S1 ES1 P+E

+S2 S2 PP P

Figure 1: The activation scheme and reaction graph of the original and
lumped reaction. The dashed lines denote the reversible case
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Nonlinear lumping of cascade activation reactions II

This new reaction scheme implies the following reactions:

E + S1

k
+
1GGGGGGGGGGGGBFGGGGGGGGGGGG

k
−

1

ES1

k
+
2GGGGGGGGGGGGBFGGGGGGGGGGGG

k
−

2

E + P̂

P̂ + S2

k
+
3GGGGGGGGGGGGBFGGGGGGGGGGGG

k
−

3

P̂ S2

k
+
4GGGGGGGGGGGGBFGGGGGGGGGGGG

k
−

4

P̂ (6)

E

S1

ES1

P1S2

P1S2

P2

E

S1

ES1

PS2

PS2

y

y

The structure graph of the original and the lumped reaction. The dashed
lines denote the reversible case
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Variation of stochiometric coefficients I

In the original case: S1 + ES1 + P1 = 1, S2 + P1S2 + P2 = 1.
Transformations: S1 → P1 S2 → P2 We can observe that S1 and S2 will be

transformed into P1 and P2 which ones will reach the concentration value of 1.
In the case of the lumped reaction scheme, S1 → P̂ , and S2 is eliminated via P̂ .

In this case the stochiometric coefficients are changed, according to the final
concentration of the final product of the original reaction. In this case one unit of

both substrates are transformed into half unit of the product.

E + S1

k+

1GGGGGGGBFGGGGGGG
k−1

ES1

k+

2GGGGGGGBFGGGGGGG
k−2

E + 0.5P̂

P̂ + S2

k+

3GGGGGGGBFGGGGGGG
k−3

P̂ S2

k+

4GGGGGGGBFGGGGGGG
k−4

1.5P̂ (7)

This reactions will imply the final concentration of 1 for P̂ .
y = P̂
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Variation of stochiometric coefficients II

• Original model - 3 conservation equations, lumped -2

• Both models are of degree of freedom 4 (7/6 state eq., 3/2 conservation eq.)

Simulation results
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The normalized concentrations of the substrates and the products in the case of the
original and the lumped reaction as functions of time and as state trajectory
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Output transformation I

y=transformed S2 (=Stot
2

− S2)

E + S1

k
+
1GGGGGGGGGGGGBFGGGGGGGGGGGG

k
−

1

ES1

k
+
2GGGGGGGGGGGGBFGGGGGGGGGGGG

k
−

2

E + P̂

P̂ + S2

k
+
3GGGGGGGGGGGGBFGGGGGGGGGGGG

k
−

3

P̂ S2

k
+
4GGGGGGGGGGGGBFGGGGGGGGGGGG

k
−

4

P̂

E
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y

y

The structure graph of the original and the lumped reaction. The dashed
lines denote the reversible case
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Output transformation II

Simulation results:
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Generalizations I - Two step cascade

We can generalize the state-variable lumping method also for a two-step cascade.

Original Lumped

E

S1 P1

S2 P2

E

S1 P

S2

S3 P3

S3

The activation scheme of the original and the lumped reaction
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Generalizations II - Simulation results

Simulation results in the case of the output transformation method:
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Better approximation of input-output behavior is achieved compared to the method of

the variation of stochiometric coefficients.
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Generalizations III - Feedback regulated cascade

One important example: MAPK cascade - central signaling cascade playing part in

DNA expression control, cell cycle, etc.
Activation sequence: Ras → Raf → MEK→ ERK

+ FEEDBACK REGULATION
We can generalize the state-variable lumping method also for a feedback regulated

cascade.

Original Lumped

E

S1 P1

S2P2

E

S1 P

S2P2

The activation scheme of the original and the lumped reaction
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Generalizations IV - Simulation results

Simulation results in the case of the output transformation method:
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Conclusions

Conclusions
• A step towards minimal input-output model based on structural properties

(Gray-box modeling).

• Acceptable results in the case of various parameter sets, in the case of identical

parameters.

• Output transformation - better results in the case of irreversible reactions.

• Can be applied also for two step and feedback regulated reactions.
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