


























Outline
 Newton-Krylov methods and preconditioning

 Preconditioning with an approximate macroscopic model

 model problem: lattice Boltzmann

 coarse traveling wave solutions

 Patch dynamics and multi-grid preconditioning

 patch dynamics

 multi-grid

 model problem: homogenization
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Microscopic simulations over whole domain: too expensive!

Compute only in small fraction of space-time domain

Gear and Kevrekidis, Projective integration for stiff differential equations, SISC 24:1091-1106, 2004
Kevrekidis et al., Equation-free computation, Comm. Math. Sci 1(4), 2003
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 Nonlinear system

 Linear system in each Newton step

 We only have matrix-vector products => GMRES

 Precondition with a few (1) iterations of a different solver

 Here           represents a single multi-grid cycle

 Can be inaccurate ; has to be cheap

Multi-grid preconditioning
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Multi-grid idea 1 
Smoothing
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Multi-grid idea 1 
Smoothing

 Linear system

 We assume to have an iterative method of the form

Ax = b

x(m+1) = x(m) + p(A)
(
b−Ax(m)

)



Multi-grid idea 1 
Smoothing

 Linear system

 We assume to have an iterative method of the form

 Good error smoothing, but slow convergence

Ax = b

x(m+1) = x(m) + p(A)
(
b−Ax(m)

)
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Multi-grid idea 2 
Coarse-grid correction

 Do a few iterations until error is smooth: smoothing
 Solve for the error on a coarser grid

Presmoothing: x̄(m)
h = S(x(m)

h , b, ν1)

Coarse grid correction
Compute defect: d(m)

h = b−Ahx̄(m)

Restrict defect: d(m)
2h = I2h

h d(m)

Coarse grid solve: A2hv2h = d(m)
2h

Interpolate correction: v(m)
h = Ih

2hv(m)
2h

Update fine-grid solution: x̂(m)
h = x̄(m)

h + v(m)
h

Postsmoothing: x(m+1)
h = S(x̂(m)

h , b, ν1)
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 “Microscopic” equation:

 Macroscopic equation:

Model homogenization problem

Model problem for convergence analysis
PDE at both levels => possible to analyze convergence analytically 
Elimination of additional effects (e.g. initialization of microscopic model)



Numerical results
Multigrid as solver
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Conclusions and current work

 Newton-GMRES for coarse fixed points

 Preconditioning is necessary for fast convergence

 Based on a “sloppy” macroscopic model

 If patch dynamics: multi-grid

 Currently investigating:

 Decreasing accuracy of the macroscopic model

 Extend multi-grid ideas to hyperbolic problems


