Macroscopic Newton-Krylov methods for multiscale systems

Giovanni Samaey
Dept. of Computer Science, K.U. Leuven

In collaboration with:
Dirk Roose, Yannis Kevrekidis, Wim Vanroose, Pieter Van Leemput
Modeling of multiscale phenomena
Microscopic models and coarse-graining

- Microscopic description
- E.g. molecular dynamics
 \[\forall i : m_i \ddot{x}_i = \sum_{j=1}^{N} F_{ij} \]
 - Expensive
 - (Too) much detail

\[\downarrow \textbf{Coarse-graining} \]

- Macroscopic description
 - PDE for particle densities
 \[\partial_t U(x, t) = D \partial_{xx} U(x, t) \]
 - Only averaged quantities
 - Often not possible analytically
Numerical coarse-graining
Coarse time-stepper

- A macroscopic model should exist, but is unavailable

- Approximate time-stepper for the macroscopic variables using microscopic simulations

- Lifting $u(x, t) := \mathcal{L}(U)(x, t)$
 - need to fill in “implied” data

- Microscopic simulation
 - possibly of an ensemble

- Restriction $U(x, t + \Delta t) := \mathcal{R}(u)(x, t + \Delta t)$
Outline

- Newton-Krylov methods and preconditioning
- Preconditioning with an approximate macroscopic model
 - lattice Boltzmann model
 - coarse traveling wave solutions
- Patch dynamics and multi-grid preconditioning
 - homogenization problems
Timestepper-based bifurcation analysis

\[\partial_t \bar{U} = F(\bar{U}) \]

\[\bar{U} \rightarrow \Phi_\tau(\bar{U}) \rightarrow \bar{U}(t + \tau) \]

\[\bar{U} - \Phi_\tau(\bar{U}) = 0 \]

\[D \Phi_\tau(\bar{U}) \]

Newton — Krylov

Newton — Picard

Tuckerman and Barkley, Bifurcation analysis for timesteppers.
Lust and Roose, Computation and bifurcation analysis of periodic solutions of large-scale systems.
Coarse bifurcation analysis

$$\Phi_\tau(\bar{U})$$

$$\bar{U} - \Phi_\tau(\bar{U}) = 0$$

$$D\Phi_\tau(\bar{U})$$

$$\bar{U} + \epsilon \cdot v$$

$$D\Phi_\tau(\bar{U}) \cdot v$$

Newton – Krylov
Newton – Picard

I.G. Kevrekidis et al. 2000 - …
Newton—GMRES and preconditioning

- Nonlinear system \(\bar{U} - \Phi_\tau(\bar{U}) = 0 \)

- Newton-Raphson procedure
 - iterative method \(\bar{U}^{(k+1)} = \bar{U}^{(k)} + d\bar{U}^{(k)} \)
 - in each step, solve a linear system
 \[
 \left(I - D\Phi_\tau(\bar{U}^{(k)}) \right) d\bar{U}^{(k)} = -\left(\bar{U}^{(k)} - \Phi_\tau(\bar{U}^{(k)}) \right)
 \]

- We only have matrix-vector products
 - iterative method, such as GMRES
 - performance depends on spectrum \(\Rightarrow \) precondition
 \[
 M^{-1} \left(I - D\Phi_\tau(\bar{U}^{(k)}) \right) d\bar{U}^{(k)} = -M^{-1} \left(\bar{U}^{(k)} - \Phi_\tau(\bar{U}^{(k)}) \right)
 \]
Outline

- Newton-Krylov methods and preconditioning
- Preconditioning with an approximate macroscopic model
 - lattice Boltzmann model
 - coarse traveling wave solutions
- Patch dynamics and multi-grid preconditioning
 - homogenization problems
Lattice Boltzmann model problem

\[
\begin{align*}
 f_i(x + c_i dx, t + dt) &= (1 - \omega)f_i(x, t) - \omega f_i^{eq}(x, t) - E(x, t) \sum_j V_{ij} f_j(x, t) + R_i(x, t), \\
 \partial_t E(x, t) &= -\rho(x, t) E(x, t) - a \partial_x \rho(x, t)
\end{align*}
\]

- Modeling of ionization waves
- Position and velocity of electrons are important
 - fast particles collide with (immobile) ions (which are not modeled)
 - collision generates 2 slow electrons, which are accelerated
- Time-scale separation
 - an effective reaction-diffusion equation exists for density
 - the reaction term cannot be obtained in closed form
Lattice Boltzmann model problem

- Traveling waves, which move with constant speed
- Avalanche of electrons, which shield the electrical field
Traveling wave solutions as fixed points
Numerical example

- Coarse time-stepper
 - lifting is done with constrained runs (see PVL)
 - runs LBM for 20 steps
- Preconditioner
 - "sloppy" Chapman-Enskog to get an approximate PDE
 - implicit Euler time-stepper

![Graphs](image-url)
Convergence and performance

- System size: 2601 mesh-points
- Spectrum bounded away from zero
- GMRES converges in 30-40 iterations

Outline

- Newton-Krylov methods and preconditioning
- Preconditioning with an approximate macroscopic model
 - model problem: lattice Boltzmann
 - coarse traveling wave solutions
- Patch dynamics and multi-grid preconditioning
 - patch dynamics
 - multi-grid
 - model problem: homogenization
Coarse time-stepper
Increasing efficiency

Microscopic simulations over whole domain: too expensive!
Compute only in small fraction of space-time domain

Projective integration
Patch dynamics

Gear and Kevrekidis, Projective integration for stiff differential equations, SISC 24:1091-1106, 2004
Finite Difference Patch Dynamics

Unknown partial differential equation:

\[\partial_t U = F(U, \partial_x U, \ldots, \partial_x^d U) \]

S, Kevrekidis, Roose, Patch dynamics with buffers for homogenization problems, JCP 213: 264-287, 2006
Finite Difference Patch Dynamics

Unknown partial differential equation:

\[\partial_t U = F(U, \partial_x U, \ldots, \partial_x^d U) \]

S, Kevrekidis, Roose, Patch dynamics with buffers for homogenization problems, JCP 213: 264-287, 2006
Finite Difference Patch Dynamics

Unknown partial differential equation:

\[\partial_t U = F(U, \partial_x U, \ldots, \partial^{d-1}_x U) \]

Computational experiment

I.C.: Taylor series

\[U_i(x, t) = \sum_k D^k(U)(x-x_i)^k \]

S, Kevrekidis, Roose, Patch dynamics with buffers for homogenization problems, JCP 213: 264-287, 2006
Finite Difference Patch Dynamics

Unknown partial differential equation:

\[\partial_t U = F(U, \partial_x U, \ldots, \partial_{x}^{d} U) \]

Computational experiment

I.C.: Taylor series

\[U_i(x, t) = \sum_k D^k(U) \frac{(x-x_i)^k}{k!} \]

Run for a time \(\delta t \)

S, Kevrekidis, Roose, Patch dynamics with buffers for homogenization problems, JCP 213: 264-287, 2006
Finite Difference Patch Dynamics

Unknown partial differential equation:

\[\partial_t U = F(U, \partial_x U, \ldots, \partial_x^d U) \]

Computational experiment

I.C.: Taylor series

\[U_i(x, t) = \sum_k D^k(U) \frac{(x-x_i)^k}{k!} \]

Run for a time \(\delta t \)

Estimate

\[\frac{dU_i}{dt} = \frac{U_i(t+\delta t) - U_i(t)}{\delta t} \]

S, Kevrekidis, Roose, Patch dynamics with buffers for homogenization problems, JCP 213: 264-287, 2006
Finite Difference Patch Dynamics

Unknown partial differential equation:

\[\partial_t U = F(U, \partial_x U, \ldots, \partial_x^d U) \]

Computational experiment

I.C.: Taylor series

\[U_i(x, t) = \sum_k D^k(U) \frac{(x-x_i)^k}{k!} \]

Run for a time \(\delta t \)

Estimate

\[\frac{dU_i}{dt} = \frac{U_i(t+\delta t) - U_i(t)}{\delta t} \]

S, Kevrekidis, Roose, Patch dynamics with buffers for homogenization problems, JCP 213: 264-287, 2006
Multi-grid preconditioning

- Nonlinear system \(\bar{U} - \Phi_\tau(\bar{U}) = 0 \)

- Linear system in each Newton step
 \[
 \left(I - D\Phi_\tau(\bar{U}^{(k)}) \right) d\bar{U}^{(k)} = - \left(\bar{U}^{(k)} - \Phi_\tau(\bar{U}^{(k)}) \right)
 \]

- We only have matrix-vector products => GMRES

- Precondition with a few (1) iterations of a different solver
 \[
 M^{-1} \left(I - D\Phi_\tau(\bar{U}^{(k)}) \right) d\bar{U}^{(k)} = - M^{-1} \left(\bar{U}^{(k)} - \Phi_\tau(\bar{U}^{(k)}) \right)
 \]

 Here \(M^{-1} \) represents a single multi-grid cycle

- Can be inaccurate ; has to be cheap
Multi-grid idea 1
Smoothing
Multi-grid idea 1
Smoothing

\[\sim \text{Linear system} \left(I - D\Phi_{\tau}(\bar{U}^{(k)}) \right) d\bar{U}^{(k)} = - \left(\bar{U}^{(k)} - \Phi_{\tau}(\bar{U}^{(k)}) \right) \]
Multi-grid idea 1

Smoothing

\[\text{Linear system} \left(I - D\Phi_\tau(\bar{U}^{(k)}) \right) d\bar{U}^{(k)} = - \left(\bar{U}^{(k)} - \Phi_\tau(\bar{U}^{(k)}) \right) \]

\[A \quad x \quad = \quad b \]
Multi-grid idea 1
Smoothing

Linear system
\[Ax = b \]

We assume to have an iterative method of the form
\[x^{(m+1)} = x^{(m)} + p(A) \left(b - Ax^{(m)} \right) \]
Multi-grid idea 1

- Linear system $Ax = b$
- We assume to have an iterative method of the form
 \[x^{(m+1)} = x^{(m)} + p(A) \left(b - Ax^{(m)} \right) \]
- Good error smoothing, but slow convergence

![Graph showing error versus x with different smoothing steps]

- 0 smoothing steps
- 5 smoothing steps
- 100 smoothing steps
Multi-grid idea 2
Coarse-grid correction

~ Do a few iterations until error is smooth: smoothing
~ Solve for the error on a coarser grid

Presmothing: \(\bar{x}_h^{(m)} = S(x_h^{(m)}, b, \nu_1) \)

Coarse grid correction

Compute defect: \(d_h^{(m)} = b - A_h \bar{x}_h^{(m)} \)

Restrict defect: \(d_{2h}^{(m)} = I_{2h}^{2h} d_h^{(m)} \)

Coarse grid solve: \(A_{2h} v_{2h} = d_{2h}^{(m)} \)

Interpolate correction: \(v_h^{(m)} = I_{2h}^h v_{2h}^{(m)} \)

Update fine-grid solution: \(\hat{x}_h^{(m)} = \bar{x}_h^{(m)} + v_h^{(m)} \)

Postsmothing: \(x_h^{(m+1)} = S(\hat{x}_h^{(m)}, b, \nu_1) \)
Multi-grid idea 2

Coarse-grid correction

Presmoothing: \[\bar{x}_h^{(m)} = S(x_h^{(m)}, b, \nu_1) \]

Coarse grid correction

Compute defect: \[d_h^{(m)} = b - A_h \bar{x}^{(m)} \]

Restrict defect: \[d_{2h}^{(m)} = I_{2h}^{h} d^{(m)} \]

Coarse grid solve: \[A_{2h} v_{2h} = d_{2h}^{(m)} \]

Interpolate correction: \[v_h^{(m)} = I_{2h}^{h} v_{2h}^{(m)} \]

Update fine-grid solution: \[\hat{x}_h^{(m)} = \bar{x}_h^{(m)} + v_h^{(m)} \]

Postsmoothing: \[x_h^{(m+1)} = S(\hat{x}_h^{(m)}, b, \nu_1) \]
Multi-grid idea 2

Coarse-grid correction

Presmoothing: \(\hat{x}_h^{(m)} = S(x_h^{(m)}, b, \nu_1) \)

Coarse grid correction

Compute defect: \(d_h^{(m)} = b - A_h \bar{x}^{(m)} \)
Restrict defect: \(d_{2h}^{(m)} = I_{2h}^h d^{(m)} \)
Coarse grid solve: \(A_{2h} v_{2h} = d_{2h}^{(m)} \)
Interpolate correction: \(v_h^{(m)} = I_h^{2h} v_{2h}^{(m)} \)
Update fine-grid solution: \(\hat{x}_h^{(m)} = \bar{x}_h^{(m)} + v_h^{(m)} \)

Postsmoothering: \(x_h^{(m+1)} = S(\hat{x}_h^{(m)}, b, \nu_1) \)
Model homogenization problem

“Microscopic” equation: \(\partial_t u(x, t) = \partial_x \left(a \left(\frac{x}{\varepsilon} \right) \partial_x u(x, t) \right) + r(u(x, t)) \)

Macroscopic equation: \(\partial_t U(x, t) = \partial_x \left(a^* \partial_x U(x, t) \right) + r(U(x, t)) \)

Model problem for convergence analysis

PDE at both levels \(\Rightarrow \) possible to analyze convergence analytically

Elimination of additional effects (e.g. initialization of microscopic model)
Numerical results
Multigrid as solver

- Numerical results
- Multigrid as solver

- Norm of residual
- Iteration

- Pure diffusion model problem
- Chebychev polynomial smoother

- Eigenvalue λ_k
- Wave number k
- Norm of residual
- Convergence factor $1/17$
Numerical results
Multigrid as preconditioner

- Multigrid as preconditioner for GMRES is more efficient
- Behaviour identical to standard multigrid for PDEs

![Graphs showing convergence factor](image)
Conclusions and current work

- Newton-GMRES for coarse fixed points
- Preconditioning is necessary for fast convergence
 - Based on a “sloppy” macroscopic model
 - If patch dynamics: multi-grid
- Currently investigating:
 - Decreasing accuracy of the macroscopic model
 - Extend multi-grid ideas to hyperbolic problems