Macroscopic Newton-Krylov methods for multiscale systems

Giovanni Samaey^{*} Dept. of Computer Science, K.U. Leuven

In collaboration with: Dirk Roose, Yannis Kevrekidis, Wim Vanroose, Pieter Van Leemput

Modeling of multiscale phenomena Microscopic models and coarse-graining

- ✤ Microscopic description
- ◆ E.g. molecular dynamics
 ∀i : $m_i \ddot{x}_i = \sum_{j=1}^N F_{ij}$ ◆ Expensive
 - 🔹 (Too) much detail

- Macroscopic description • PDE for particle densities $\partial_t U(x,t) = D\partial_{xx}U(x,t)$ • Only averaged quantities
- Often not possible analytically

Numerical coarse-graining Coarse time-stepper

- A macroscopic model should exist, but is unavailable
- Approximate time-stepper for the macroscopic variables using microscopic simulations
- Lifting $u(x,t) := \mathcal{L}(U)(x,t)$
 - need to fill in "implied" data
- · Microscopic simulation
 - possibly of an ensemble

Outline

- Newton-Krylov methods and preconditioning
- Preconditioning with an approximate macroscopic model
 - ✤ lattice Boltzmann model
 - coarse traveling wave solutions
- Patch dynamics and multi-grid preconditioning
 - homogenization problems

Timestepper-based bifurcation analysis $\partial_{,}\overline{U} = F(U)$ $ar{U} - \Phi_{ au}(ar{U})$ (k+1) $\overline{U}(t+\tau)$ $\bar{U} - \Phi_{\tau}(\bar{U}) = 0$ $D\Phi_{\tau}(\bar{U})$ $\overline{\tau\tau}^{(k)}$ $\overline{\tau\tau}^{(k)}$ $\Phi_{\tau}(U)$ Newton-Krylov $D\Phi_{\tau}(\bar{U}$ Newton-Picard $\Phi_{\tau}(\bar{U}+\epsilon\cdot v)$ $U + \epsilon \cdot v$

Tuckerman and Barkley, Bifurcation analysis for timesteppers. Lust and Roose, Computation and bifurcation analysis of periodic solutions of large-scale systems. Both in IMA Volumes in Mathematics and its Applications 119 (2000)

Coarse bifurcation analysis

Newton – Krylov Newton – Picard

I.G. Kevrekidis et al. 2000 - ...

Newton – GMRES and preconditioning

- Nonlinear system $\bar{U} \Phi_{\tau}(\bar{U}) = 0$
- ✤ Newton-Raphson procedure
 - iterative method $\bar{U}^{(k+1)} = \bar{U}^{(k)} + d\bar{U}^{(k)}$
 - In each step, solve a linear system $\left(I D\Phi_{\tau}(\bar{U}^{(k)})\right) d\bar{U}^{(k)} = -\left(\bar{U}^{(k)} \Phi_{\tau}(\bar{U}^{(k)})\right)$
- ✤ We only have matrix-vector products
 - iterative method, such as GMRES
 - ∞ performance depends on spectrum => precondition $\frac{M^{-1}\left(I D\Phi_{\tau}(\bar{U}^{(k)})\right) d\bar{U}^{(k)} = -M^{-1}\left(\bar{U}^{(k)} \Phi_{\tau}(\bar{U}^{(k)})\right)$

Outline

- Newton-Krylov methods and preconditioning
- Preconditioning with an approximate macroscopic model
 - 🔹 lattice Boltzmann model
 - coarse traveling wave solutions
- Patch dynamics and multi-grid preconditioning
 - homogenization problems

Lattice Boltzmann model problem

$$\begin{cases} f_i(x+c_idx,t+dt) &= (1-\omega)f_i(x,t) - \omega f_i^{eq}(x,t) \\ -E(x,t)\sum_j V_{ij}f_j(x,t) + R_i(x,t), \\ \partial_t E(x,t) &= -\overline{\rho}(x,t)E(x,t) - a\partial_x\overline{\rho}(x,t) \end{cases}$$

- Modeling of ionization waves
- Position and velocity of electrons are important
 - fast particles collide with (immobile) ions (which are not modeled)
 - collision generates 2 slow electrons, which are accelerated
- Time-scale separation
 - an effective reaction-diffusion equation exists for density
 - the reaction term cannot be obtained in closed form

Lattice Boltzmann model problem

Traveling waves, which move with constant speed

✤ Avalanche of electrons, which shield the electrical field

Traveling wave solutions as fixed points

Numerical example

- Coarse time-stepper
 - lifting is done with constrained runs (see PVL)
 - ✤ runs LBM for 20 steps
- · Preconditioner
 - * "sloppy" Chapman-Enskog to get an approximate PDE
 - ✤ implicit Euler time-stepper

Convergence and performance

- System size: 2601 mesh-points
- ✤ Spectrum bounded away from zero
- GMRES converges in 30-40 iterations

S, Vanroose, Roose, Kevrekidis, Equation-free computation of traveling waves of lattice Boltzmann models with Newton-Krylov solvers, 2007, Preprint.

Outline

- Newton-Krylov methods and preconditioning
- Preconditioning with an approximate macroscopic model
 - model problem: lattice Boltzmann
 - coarse traveling wave solutions
- Patch dynamics and multi-grid preconditioning
 - ✤ patch dynamics
 - 🔹 multi-grid
 - model problem: homogenization

Coarse time-stepper Increasing efficiency

Microscopic simulations over whole domain: too expensive!
Compute only in small fraction of space-time domain

Gear and Kevrekidis, Projective integration for stiff differential equations, SISC 24:1091-1106, 2004 Kevrekidis et al., Equation-free computation, Comm. Math. Sci 1(4), 2003

S, Kevrekidis, Roose, Patch dynamics with buffers for homogenization problems, JCP 213: 264-287, 2006

S, Kevrekidis, Roose, Patch dynamics with buffers for homogenization problems, JCP 213: 264-287, 2006

Multi-grid preconditioning

- Nonlinear system $\bar{U} \Phi_{\tau}(\bar{U}) = 0$
- We only have matrix-vector products => GMRES
- Solution with a few (1) iterations of a different solver $\frac{M^{-1}\left(I D\Phi_{\tau}(\bar{U}^{(k)})\right) d\bar{U}^{(k)}}{d\bar{U}^{(k)}} = -M^{-1}\left(\bar{U}^{(k)} \Phi_{\tau}(\bar{U}^{(k)})\right)$
 - Here M^{-1} represents a single multi-grid cycle
 - Can be inaccurate ; has to be cheap

Multi-grid idea 1 Smoothing

Multi-grid idea 1 Smoothing \sim Linear system $\left(I - D\Phi_{\tau}(\bar{U}^{(k)})\right) d\bar{U}^{(k)} = -\left(\bar{U}^{(k)} - \Phi_{\tau}(\bar{U}^{(k)})\right)$

Multi-grid idea 1
Smoothing

$$\sim$$
 Linear system $\left(I - D\Phi_{\tau}(\bar{U}^{(k)})\right) d\bar{U}^{(k)} = -\left(\bar{U}^{(k)} - \Phi_{\tau}(\bar{U}^{(k)})\right)$
 A $x = b$

Multi-grid idea 1 Smoothing

- \sim Linear system Ax = b
- ✤ We assume to have an iterative method of the form

$$x^{(m+1)} = x^{(m)} + p(A)\left(b - Ax^{(m)}\right)$$

Multi-grid idea 1 Smoothing

 \sim Linear system Ax = b

Solution → We assume to have an iterative method of the form $x^{(m+1)} = x^{(m)} + p(A) \left(b - Ax^{(m)} \right)$

Good error smoothing, but slow convergence

0 smoothing steps
5 smoothing steps
100 smoothing steps

Multi-grid idea 2 Coarse-grid correction

Do a few iterations until error is smooth: smoothing
Solve for the error on a coarser grid

Presmoothing:
$$\bar{x}_h^{(m)} = S(x_h^{(m)}, b, \nu_1)$$

Coarse grid correction Compute defect: Restrict defect: Coarse grid solve: Interpolate correction: Update fine-grid solution:

 $d_{h}^{(m)} = b - A_{h}\bar{x}^{(m)}$ $d_{2h}^{(m)} = I_{h}^{2h}d^{(m)}$ $A_{2h}v_{2h} = d_{2h}^{(m)}$ $v_{h}^{(m)} = I_{2h}^{h}v_{2h}^{(m)}$ $\hat{x}_{h}^{(m)} = \bar{x}_{h}^{(m)} + v_{h}^{(m)}$

Postsmoothing:

$$x_h^{(m+1)} = S(\hat{x}_h^{(m)}, b, \nu_1)$$

Multi-grid idea 2 Coarse-grid correction

Presmoothing:

 $\bar{x}_{h}^{(m)} = S(x_{h}^{(m)}, b, \nu_{1})$

Coarse grid correction Compute defect: Restrict defect: Coarse grid solve: Interpolate correction: Update fine-grid solution:

Postsmoothing:

Multi-grid idea 2 Coarse-grid correction

Presmoothing:

 $\bar{x}_{h}^{(m)} = S(x_{h}^{(m)}, b, \nu_{1})$

Coarse grid correction Compute defect: Restrict defect: Coarse grid solve: Interpolate correction: Update fine-grid solution: 2^{n} n $A_{2h}v_{2h} = d_{2h}^{(m)}$ $v_{h}^{(m)} = I_{2h}^{h}v_{2h}^{(m)}$ $\hat{x}_{h}^{(m)} = \bar{x}_{h}^{(m)} + v_{h}^{(m)}$

...

Postsmoothing:

Model homogenization problem

• "Microscopic" equation: $\partial_t u(x,t) = \partial_x \left(a\left(x/\epsilon \right) \partial_x u(x,t) \right) + r(u(x,t))$

• Macroscopic equation: $\partial_t U(x,t) = \partial_x (a^* \partial_x U(x,t)) + r(U(x,t))$

Model problem for convergence analysis

PDE at both levels => possible to analyze convergence analytically Elimination of additional effects (e.g. initialization of microscopic model)

Numerical results Multigrid as solver

10

Numerical results Multigrid as preconditioner

Multigrid as preconditioner for GMRES is more efficient
 Behaviour identical to standard multigrid for PDEs

Conclusions and current work

- Newton-GMRES for coarse fixed points
- Preconditioning is necessary for fast convergence
 - ✤ Based on a "sloppy" macroscopic model
 - ✤ If patch dynamics: multi-grid
- Currently investigating:
 - Decreasing accuracy of the macroscopic model
 - Extend multi-grid ideas to hyperbolic problems