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Knudsen layers in microscale transport
e.g., Couette flow in ideal gases

black: DSMC blue: Navier-Stokes-Fourier red: R13 equations

Knudsen layers: dominate in linear flows (for not too small Knudsen numbers)

not too important in strongly non-linear flows



Knudsen layers and moments?

Moments are superposition of many Knudsen layers [HS 2002]

Question: How many Knudsen layers / moment equations required?

Answer: use simple linear kinetic model

⇛ analytical calculations for all moment numbers



The kinetic model and its properties

kinetic model for 1-D heat transfer (simplified phonon/photon model)
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f (x, t, µ) - distribution function, ε- Knudsen number, µ = cosϑ - direction cosine

energy density and heat flux are moments
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Moments and their equations

N moments of Legendre polynomials
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∫ 1

−1

Pn (µ) fdµ (n = 0, 1, . . . , N)

PN - approximation of distribution
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moment equations from f (N) and kinetic equation
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Question: what value of N for Knudsen number ε ??



H-theorem for moments

PN approximation gives second law
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Remark: Quadratic entropy for R13 eqs. [HS & MT 2007]



Boundary conditions

Maxwell boundary conditions for distribution function (fW = 1
2λW )

f̄ =



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χfW + (1− χ) f (−γµ) γµ > 0

f (γµ) γµ < 0

χ - accommodation coefficient, γ = ±1 at x = ∓1/2

boundary conditions for moments: use odd moments only! [Grad 1949]
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Remark: H-theorem at walls fulfilled, computation via entropy fluxes



Asymptotics: Chapman-Enskog expansion

expansion in Knudsen number only non-conserved moments
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zeroth order contributions vanish

λ(0)n = 0 (n ≥ 1)

only heat flux has first order contribution (Fourier’s law)
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, λ(1)n = 0 (n ≥ 2) .

n-th moment has order n

λ(α−1)n = 0 for α ≤ n

e.g., third order transport eq.
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expansion only valid in bulk — not in Knudsen layer



Asymptotics: order of magnitude method

based on CE order of magnitude

λn = εnλ̃n

step by step reduction to order O
(
ε2N
)
yields truncated set [Leicester 2005]
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expansion only valid in bulk — not in Knudsen layer



Moment system as discrete velocity model

N-moment equations in matrix form
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g(l) - eigenvalues, θmn - matrix of eigenvectors, γn - population numbers, λn = θnrγr - org. moments

eigenvalues correspond to discrete angles evenly distributed in [0, π]

g(l) = µ(l) = cosϑ(l)

Question: Is there similar analogy for 3-D moment eqs??



Knudsen layer solutions (steady state)

bulk moments
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Results for ε = 0.1 (N = 1, 3, 5, 21)

energy density

eigenvalues/amplitudes and moments

jumps, invisible Knudsen layers, no visible differences with N



Results for ε = 1 (N = 1, 3, 7, 21)

N = {1, 3, 7, 21}: heat flux:λ1 = {−0.2857,−0.2779, 0.2770,−0.2767}

energy density

eigenvalues/amplitudes and moments

marked Knudsen layers, already N = 3 gives good agreement!!



Results for ε = 10 (N = 1, 11, 31)

Energy density, second moment

Eigenvalues/amplitudes and moments

marked linear Knudsen layers, jumps; N must be large (N ≥ 31)



Results for 0 < ε <∞ (N = 31)

energy density at wall, heat flux

deviation [%] for N = 1, 3 [corr: with Knudsen layer correction]

error less than 5% requires ε < 0.3 (N = 1) and ε < 1 (N = 3)



Results for 0 < ε <∞ (N = 31)

entropy generation: total/bulk/boundary



Asymptotics with boundary conditions

evaluation of bulk eqs and boundary conditions shows

heat flux: λ1 = O (ε)

energy jump λ̄0 − λW = O (ε)

Knudsen layer moments (n ≥ 2) λn = O (ε)

energy first order
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Knudsen layer correction: assume λn ∝ λ1, correction factor ζ of order unity
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improves energy jump, worsens heat flux ζ = 0.869



Asymptotics with boundary conditions

Knudsen layer moments are O (ε), contribute to O
(
ε2
)

⇛ higher order theories must include Knudsen layers of width εb(α)
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N=1: no Knudsen layer

N=3: b(a) = {±0.5071}

N=5 b(l) = {±0.8162,±0.3122}

N=7: b(l) = {±0.9065,±0.6282,±0.2243}

for ε < 1, one (two) Knudsen layer(s) is not too bad =⇒ N = 3 (5)

for ε > 1 need more, criterion presently unclear

ε = 1 N = 7

ε = 2 N = 9

ε = 4 N = 11

e = 10 N = 31



Conclusions

• linear moment equations with quadratic entropy (H-theorem)

• equivalent to discrete velocity model (DVM)

• boundary conditions from kinetic model

• Knudsen layers (from eigenvalue problem)

• Chapman-Enskog etc valid only in bulk

• Knudsen layers are second order effect

• include at least some Knudsen layers (more is better, but expensive)

Conjecture

• other (linear) moment systems should behave similarly


