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Thermodynamic Tree: The Space of Admissible Paths∗
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Abstract. Is a spontaneous transition from a state x to a state y allowed by thermodynamics? Such a question
arises often in chemical thermodynamics and kinetics. We ask the following more formal question: Is
there a continuous path between these states, along which the conservation laws hold, the concentra-
tions remain nonnegative, and the relevant thermodynamic potential G (Gibbs energy, for example)
monotonically decreases? The obvious necessary condition, G(x) ≥ G(y), is not sufficient, and we
construct the necessary and sufficient conditions. For example, it is impossible to overstep the equi-
librium in 1-dimensional (1D) systems (with n components and n−1 conservation laws). The system
cannot come from a state x to a state y if they are on the opposite sides of the equilibrium even
if G(x) > G(y). We find the general multidimensional analogue of this 1D rule and constructively
solve the problem of the thermodynamically admissible transitions. We study dynamical systems,
which are given in a positively invariant convex polyhedron D and have a convex Lyapunov function
G. An admissible path is a continuous curve in D along which G does not increase. For x, y ∈ D,
x � y (x precedes y) if there exists an admissible path from x to y and x ∼ y if x � y and y � x.
The tree of G in D is a quotient space D/ ∼. We provide an algorithm for the construction of this
tree. In this algorithm, the restriction of G onto the 1-skeleton of D (the union of edges) is used.
The problem of existence of admissible paths between states is solved constructively. The regions
attainable by the admissible paths are described.
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energy
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1. Introduction.

1.1. Motivation, ideas, and a simple example. “Applied dynamical systems” are models
of real systems. The available information about the real systems is incomplete, and uncer-
tainties of various types are encountered in the modeling. Often, we view them as errors,
such as errors in the model structure, errors in coefficients, and errors in the state observation
among others. Nevertheless, there is an order in this world of errors: some information is more
reliable, and we trust in some structures more and even respect them as laws. Some other data
are less reliable. There is a hierarchy of reliability—our knowledge and beliefs (described, for
example by R. Peierls [53] for model making in physics). Extracting as many consequences
from the more reliable data either without or before use of the less reliable information is a
task which arises naturally.

In our paper, we study dynamical systems with a strictly convex Lyapunov function G
defined in a positively invariant convex polyhedron D. For them, we analyze the admissible
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paths, along which G decreases monotonically, and find the states that are attainable from
the given initial state along the admissible paths. The main areas of applications of these
systems are chemical kinetics and thermodynamics. The motivation of our research comes
from the hierarchy of reliability of the information in these applications.

Let us discuss the motivation in more detail. In chemical kinetics, we can rank the
information in the following way. First, the list of reagents and conservation laws should
be known. Let the reagents be A1, A2, . . . , An. The nonnegative real variable Ni ≥ 0, the
amount of Ai in the mixture, is defined for each reagent, and N is the vector of composition
with coordinates Ni. The conservation laws are presented by the linear balance equations

(1) bi(N) =

n∑
j=1

ajiNj = const (i = 1, . . . ,m) .

We assume that the linear functions bi(N) (i = 1, . . . ,m) are linearly independent.

The list of the components together with the balance conditions (1) is the first part of
the information about the kinetic model. This determines the space of states, the polyhedron
D defined by the balance equations (1), and the positivity inequalities Ni ≥ 0. This is the
background of kinetic models, and any further development is less reliable. The polyhedron
D is assumed to be bounded. This means that there exist such coefficients λi that the linear
combination

∑
i λibi(N) has strictly positive coefficients:

∑
i λia

j
i > 0 for all j = 1, . . . , n.

The thermodynamic functions provide us with the second level of information about the
kinetics. Thermodynamic potentials, such as the entropy, energy, and free energy, are known
much better than the reaction rates, and, at the same time, they give us some information
about the dynamics. For example, the entropy increases in isolated systems. The Gibbs free
energy decreases in closed isothermal systems under constant pressure, and the Helmholtz
free energy decreases under constant volume and temperature. Of course, knowledge of the
Lyapunov functions gives us some inequalities for vector fields of the systems’ velocity, but the
values of these vector fields remain unknown. If there are some external fluxes of energy or
nonequilibrium substances, then the thermodynamic potentials are not Lyapunov functions,
and the systems do not relax to the thermodynamic equilibrium. Nevertheless, the inequality
of positivity of the entropy production persists, and this gives us useful information even
about the open systems. Some examples are given in [26, 28].

The next, third part of the information about kinetics is the reaction mechanism. It is
presented in the form of the stoichiometric equations of the elementary reactions,

(2)
∑
i

αρiAi →
∑
i

βρiAi ,

where ρ = 1, . . . ,m is the reaction number and the stoichiometric coefficients αρi, βρi (i =
1, . . . , n) are nonnegative integers.

A stoichiometric vector γρ of the reaction (2) is an n-dimensional vector with coordinates
γρi = βρi − αρi, that is, “gain minus loss” in the ρth elementary reaction.

The concentration of Ai is an intensive variable ci = Ni/V , where V > 0 is the volume. The
vector c = N/V with coordinates ci is the vector of concentrations. A nonnegative intensive
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quantity, rρ, the reaction rate, corresponds to each reaction (2). The kinetic equations in the
absence of external fluxes are

(3)
dN

dt
= V

∑
ρ

rργρ.

If the volume is not constant, then equations for concentrations include V̇ and have a different
form.

For perfect systems and not so fast reactions the reaction rates are functions of concen-
trations and temperature given by the mass action law and by the generalized Arrhenius
equation. A special relation between the kinetic constants is given by the principle of detailed
balance: For each value of temperature T there exists a positive equilibrium point where each
reaction (2) is equilibrated with its reverse reaction. This principle was introduced for colli-
sions by Boltzmann in 1872 [10]. Wegscheider introduced this principle for chemical kinetics
in 1901 [67]. Einstein in 1916 used it in the background for his quantum theory of emission
and absorption of radiation [17]. Later, it was used by Onsager in his famous work [51]. For
a recent review see [30].

At the third level of reliability of information, we select the list of components and the
balance conditions, find the thermodynamic potential, guess the reaction mechanism, accept
the principle of detailed balance, and believe that we know the kinetic law of elementary
reactions. However, we still do not know the reaction rate constants.

Finally, at the fourth level of available information, we find the reaction rate constants and
can analyze and solve the kinetic equations (3) or their extended version with the inclusion
of external fluxes.

Of course, this ranking of the available information is conventional, to a certain degree. For
example, some reaction rate constants may be known even better than the list of intermediate
reagents. Nevertheless, this hierarchy of the information availability—list of components, ther-
modynamic functions, reaction mechanism, reaction rate constants—reflects the real process
of modeling and the stairs of available information about a reaction kinetic system.

It seems very attractive to study the consequences of the information of each level sep-
arately. These consequences can be also organized “stairwise.” We have the hierarchy of
questions: how do we find the consequences for the dynamics (i) from the list of components,
(ii) from this list of components plus the thermodynamic functions of the mixture, and (iii)
from the additional information about the reaction mechanism?

The answer to the first question is the description of the balance polyhedron D. The
balance equations (1) together with the positivity conditions Ni ≥ 0 should be supplemented
by the description of all the faces. For each face, some Ni = 0, and we have to specify which
Ni have zero value. The list of the corresponding indices i, for which Ni = 0 on the face,
I = {i1, . . . , ik}, fully characterizes the face. This problem of double description of the convex
polyhedra [49, 14, 21] is well known in linear programming.

The list of vertices [6] and edges with the corresponding indices is necessary for the ther-
modynamic analysis. This is the 1-skeleton of D. Algorithms for the construction of the
1-skeletons of balance polyhedra as functions of the balance values were described in detail in
1980 [26]. The related problem of double description for convex cones is very important for
the pathway analysis in systems biology [58, 22].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THERMODYNAMIC TREE 249

In this work, we use the 1-skeleton of D, but the main focus is on the second step, i.e., on
the consequences of the given thermodynamic potentials. For closed systems under classical
conditions, these potentials are the Lyapunov functions for the kinetic equations. For example,
for perfect systems we assume the mass action law. If the equilibrium concentrations c∗ are
given, the system is closed, and both temperature and volume are constant, then the function

(4) G =
∑
i

ci(ln(ci/c
∗
i )− 1)

is the Lyapunov function; it should not increase in time. The function G is proportional to
the free energy F = RTG+ const (for detailed information about the Lyapunov functions for
kinetic equations under classical conditions, see the textbook [68] or the recent paper [33]).

If we know the Lyapunov function G, then we have the necessary conditions for the
possibility of transition from the vector of concentrations c to c′ during the nonstationary
reaction: G(c) ≥ G(c′) because the inequality G(c(t0)) ≥ G(c(t0 + t)) holds for any time
t ≥ 0.

The inequality G(c) ≥ G(c′) is necessary if we are to reach c′ from the initial state c
by a thermodynamically admissible path, but it is not sufficient because in addition to this
inequality there are some other necessary conditions. The simplest and most famous of them
is the following: if D is 1-dimensional (1D) (a segment), then the equilibrium c∗ divides this
segment into two parts, and both c(t0) and c(t0 + t) (t > 0) are always on the same side of
the equilibrium.

In 1D systems the overstepping of the equilibrium is forbidden. It is impossible to overstep
a point in dimension one, but it is possible to circumvent a point in higher dimensions.
Nevertheless, in any dimension the inequality G(c) ≥ G(c′) is not sufficient if we are to reach
c′ from the initial state c along an admissible path. Some additional restrictions remain in
the general case as well. A two-dimensional example is presented in Figure 1. Let us consider
the mixture of three components, A1,2,3 with the only conservation law c1 + c2 + c3 = b (we
take for illustration b = 1) and the equidistribution in equilibrium c∗1 = c∗2 = c∗3 = 1/3. The
balance polyhedron is the triangle (Figure 1(a)). In Figure 1(b) the level sets of

G =

3∑
i=1

ci(ln(3ci)− 1)

are presented. This function achieves its minimum at equilibrium, G(c∗) = −1. On the edges,
the function G achieves its conditional minimum, g0, in the middle points, and g0 = ln(3/2)−1.
G reaches its maximal value, gmax = ln 3− 1, at the vertices.

If G(c∗) < g ≤ g0, then the level set G(c) = g is connected. If g0 < g ≤ gmax, then
the corresponding level set G(c) = g consists of three components (Figure 1(b)). The critical
value is g = g0. The critical level G(c) = g0 consists of three arcs. Each arc connects two
middle points of the edges and divides D into two sets. One of them is convex and includes
two vertices, and the other includes the remaining vertex.

A thermodynamically admissible path is a continuous curve along which G does not in-
crease. Therefore, such a path cannot intersect these arcs “from inside,” i.e., from values
G(c) ≤ g0 to bigger values G(c) > g0. For example, if an admissible path starts from the
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Figure 1. The balance simplex (a), the levels of the Lyapunov function (b), and the thermodynamic tree
(c) for the simple system of three components, A1, A2, A3. Algorithm for finding a vertex v � c (d).

state with 100% of A2, then it cannot intersect the arc that separates the vertex with 100%
A1 from two other vertices. Therefore, no vertex can be reached from another one, and if
we start from 100% of A2, then the reaction cannot overcome the threshold ∼77.3% of A1,
that is, the maximum of c1 on the corresponding arc (Figure 1(b)). This is an example of the
2-dimensional (2D) analogue of the 1D prohibition of overstepping of equilibrium.

For x, y ∈ D, x � y (x precedes y) if there exists a thermodynamically admissible path
from x to y, and x ∼ y if x � y and y � x. The equivalence classes with respect to x ∼ y in
D are the connected components of the level sets G(c) = g. The quotient space T = D/ ∼ is
the space of these connected components. For the canonical projection we use the standard
notation π : D → T . This is the tree of the connected components of the level sets of G. (Here
“tree” stands for a 1D continuum, a sort of dendrite [13], and not for a tree in the sense of
the graph theory.)

If x ∼ y, then G(x) = G(y). Therefore, we can define the function G on the tree:
G(π(c)) = G(c). It is convenient to draw this tree on the plane with the vertical coordinate
g = G(x) (Figure 1(c)). The equilibrium c∗ corresponds to a root of this tree, π(c∗). If
G(c∗) < g ≤ g0, then the level set G(c) = g corresponds to one point on the tree. The level
G(c) = g0 corresponds to the branching point, and each connected component of the level
sets G(c) = g with g0 < g ≤ gmax corresponds to a separate point on the tree. The terminal
points (“leaves” with g > g0) of the tree correspond to the vertices of D.

An ordered segment [x, y] or [y, x] (x � y) on the tree T consists of points z such that
x � z � y. A continuous curve ϕ : [0, 1] → D is an admissible path if and only if its
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image π ◦ ϕ : [0, 1] → T is a path that goes monotonically down in the coordinate g. Such a
monotonic path in T from a point x to the root is just a segment [x, π(c∗)]. On this segment,
each point y is unambiguously characterized by g = G(y). Therefore, if for c ∈ D we know
the value G(c) and a vertex v � c, then we can unambiguously describe the image of c on the
tree: π(c) is the point on the segment [π(v), π(c∗)] with the given value of G, g = G(c).

We can find a vertex v � c by a chain of central projections: the first step is the central
projection of c onto the border of D with center c∗. The result is the point c′ on a face (in
Figure 1(d) this is the point c′ on an edge). The second step is the central projection of the
point c′ onto the border of the face with the center at the partial equilibrium c∗′ (that is, the
minimizer of G on the face) and so on (Figure 1(d)). If the projection on a face is the partial
equilibrium, then for any vertices v of the face v � c. In particular, if the face is a vertex v,
then v � c. For the simple example presented in Figure 1(d) this is the vertex A1.

In this paper, we extend these ideas and observations to any dynamical system which is
given in a positively invariant convex polyhedron and has there a strictly convex Lyapunov
function. The class of chemical kinetic equations for closed systems provides us standard and
practically important examples of the systems of this class.

1.2. A bit of history. It seems attractive to use an attainable region instead of the single
trajectory in situations with incomplete information or with information with different levels
of reliability. Such situations are typical in many areas of science and engineering. For
example, the theory for the continuous-time Markov chain is presented in [2, 27] and that for
the discrete-time Markov chains in [3].

Perhaps the first celebrated example of this approach was developed in biological kinetics.
In 1936, Kolmogorov [40] studied the dynamics of interacting populations of prey (x) and
predator (y) in the general form

ẋ = xS(x, y), ẏ = yW (x, y)

under monotonicity conditions ∂S(x, y)/∂y < 0, ∂W (x, y)/∂y < 0. The zero isoclines, given
by S(x, y) = 0 or W (x, y) = 0, are graphs of two functions y(x). These isoclines divide the
phase space into compartments with curvilinear borders. The geometry of the intersection of
the zero isoclines, together with some monotonicity conditions, contain important information
about the system dynamics that we can find [40] without exact knowledge of the kinetic
equations. This approach to population dynamics was applied to various problems [45, 7].
The impact of this work on population dynamics was analyzed in the review [62].

In 1964, Horn proposed to analyze the attainable regions for chemical reactors [36]. This
approach became popular in chemical engineering. It was applied to the optimization of
steady flow reactors [23], to batch reactor optimization without knowledge of detailed kinetics
[19], and to optimization of the reactor structure [34]. An analysis of attainable regions is
recognized as a special geometric approach to reactor optimization [18] and as a crucially
important part of the new paradigm of chemical engineering [35].

Many particular applications were developed, from polymerization [63] to particle breakage
in a ball mill [47] and hydraulic systems [28]. Mathematical methods for the study of attainable
regions vary from Pontryagin’s maximum principle [46] to linear programming [38], the Shrink-
Wrap algorithm [43], and convex analysis. In 1979 it was demonstrated how to utilize the
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knowledge about partial equilibria of elementary processes to construct the attainable regions
[24]. The attainable regions significantly depend on the reaction mechanism, and it is possible
to use them for the discrimination of mechanisms [29].

Thermodynamic data are more robust than the reaction mechanism. Hence, there are two
types of attainable regions. The first is the thermodynamic one, which uses the linear restric-
tions and the thermodynamic functions [25]. The second is generated by thermodynamics and
stoichiometric equations of elementary steps (but without reaction rates) [24, 31]. Shinnar
and other authors [61] rediscovered this approach. There was even an open discussion about
priority [9].

Some particular classes of kinetic systems have rich families of the Lyapunov functions.
Krambeck [41] studied attainable regions for linear systems and the l1 Lyapunov norm instead
of the entropy. Already simple examples demonstrate that the sets of distributions which are
accessible from a given initial distribution by linear kinetic systems (Markov processes) with a
given equilibrium are, in general, nonconvex polytopes [24, 27, 70]. The geometric approach to
attainability was developed for all the thermodynamic potentials and for open systems as well
[26]. Partial results for chemical kinetics and some other engineering systems are summarized
in [68, 28].

The tree of the level set components for differentiable functions was introduced in the
middle of the 20th century by Adelson-Velskii and Kronrod [1, 42] and Reeb [56]. Sometimes
these trees are called the Reeb trees [20], but from the historical point of view it may be better
to call them the Adelson-Velskii–Kronrod–Reeb (AKR) trees. These trees were essentially
used by Kolmogorov and Arnold [4] in the solution of Hilbert’s superposition problem (the
ideas, their relations to dynamical systems, and role in Arnold’s scientific life are discussed in
his lecture [5]).

The general Reeb graph can be defined for any topological space X and real function f on
it. It is the quotient space of X by the equivalence relation “∼” defined by the following: x ∼ y
holds if and only if f(x) = f(y), and x, y are in the same connected component of f−1(f(x)).
Of course, this “graph” is again not a discrete object from graph theory but a topological
space. It has applications in differential topology (Morse theory [48]), in topological shape
analysis and visualization [20, 39], in data analysis [64], and in asymptotic analysis of fluid
dynamics [44, 59]. The books [20, 39] include many illustrations of the Reeb graphs. The
efficient mesh-based methods for the computation of the graphs of level set components are
developed for general scalar fields on 2D and 3-dimensional (3D) manifolds [16].

Some time ago the tree of entropy in the balance polyhedra was rediscovered as an ade-
quate tool for representation of the attainable regions in chemical thermodynamics [25, 26].
It was applied to analysis of various real systems [37, 69]. Nevertheless, some of the math-
ematical backgrounds of this approach were delayed in development and publication. Now,
the thermodynamically attainable regions are in extensive use in chemical engineering and
beyond [18, 19, 23, 28, 34, 35, 36, 37, 38, 41, 43, 46, 47, 60, 61, 63, 69]. In this paper we aim
to provide the complete mathematical background for the analysis of the thermodynamically
attainable regions. For this purpose, we construct the trees of strictly convex functions in
a convex polyhedron. This problem allows a general meshless solution in higher dimensions
because of topological and geometrical simplicity (the domain D is a convex polyhedron, and
the function G is strictly convex in D). In this paper, we present this solution in detail.
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1.3. The problem of attainability and its solution. Let us formulate precisely the prob-
lem of attainability and its solution before the exposition of all technical details and proofs.
Our results are applicable to any dynamical system that obeys a continuous strictly convex
Lyapunov function in a positively invariant convex polyhedron. The situations with uncer-
tainty, when the specific dynamical system is not given with an appropriate accuracy but the
Lyapunov function is known, give a natural area of application of these results.

Here and below, D is a convex polyhedron in Rn, D0 consists of the vertices of D, D1 is
the union of the closed edges of D, that is, the 1-skeleton of D, and D̃1 is the graph whose
vertices correspond to the vertices of D and whose edges correspond to the edges (the graph

of the 1-skeleton) of D. We use the same notation for vertices and edges of D and D̃1.

Let a real continuous function G be given in D. We assume that G is strictly convex in
D [57]. Let x∗ be the minimizer of G in D, and let g∗ = G(x∗) be the corresponding minimal
value.

The level set Sg = {x ∈ D |G(x) = g} is closed and the sublevel set Ug = {x ∈ D |G(x) <
g} is open in D (i.e., it is the intersection of an open subset of Rn with D).

Let us transform D̃1 into a labeled graph. Each vertex v ∈ D0 is labeled by the value
γv = G(v) and each edge e = [v,w] ⊂ D1 is labeled by the minimal value of G on the segment

[v,w] ⊂ D, ge = min[v,w]G(x). The vertices and edges of D̃1 are labeled by the same numbers

as the correspondent vertices and edges of D1. By definition, the graph D̃1 \ Ug consists of

the vertices and edges of D̃1, whose labels γ ≥ g.

The graph D̃1 \Ug depends on g, but this is a piecewise constant dependence. It changes

only at g = γ, where γ are some of the labels of the graph D̃1. Therefore, it is not necessary
to find this graph and to analyze connectivity in it for each value G(y) = g.

Definition 1.1. A continuous path ϕ[0, 1] → D is admissible if the function G(ϕ(x)) does
not increase on [0, 1]. For x, y ∈ D, x � y (x precedes y) if there exists an admissible path
ϕ[0, 1] → D with ϕ(0) = x and ϕ(1) = y; x ∼ y if x � y and y � x.

The relation “�” is transitive. It is a preorder on D. The relation “∼” is an equivalence.

Definition 1.2. The tree of G in D is the quotient space T = D/ ∼.

The equivalence classes of ∼ are the path-connected components of the level sets Sg.
For the natural projection of D on T we use the notation π : D → T . We denote by
π−1(z) ⊂ D the set of preimages of z ∈ T . The preorder “�” on D transforms into a partial
order on T : π(x) � π(y) if and only if x � y. We call T also the thermodynamic tree,
keeping in mind the thermodynamic applications. The “tree” T is a 1D continuum. We
have to distinguish this continuum from trees in the graph-theoretic sense, which have the
same graphical representation but are discrete objects. In section 3.2 (“Coordinates on the
thermodynamic tree”) we describe the tree structure of this continuum. It includes the root,
the edges, the branching points, and the leaves, but the edges are represented as the real line
segments.

Definition 1.3. Let x, y ∈ T , x � y. An ordered segment [x, y] (or [y, x]) consists of points
z ∈ T such that x � z � y.

In section 3 we prove that any ordered segment [x, y] (x 	= y) in T is homeomorphic
to [0, 1]. A continuous curve ϕ : [0, 1] → D is an admissible path if and only if its image
π ◦ ϕ : [0, 1] → T is monotonic in the partial order on T . Such a monotonic path in T
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from x to y (x � y) is just a path along a segment [x, y]. Each point z on this segment is
unambiguously characterized by the value of G(z).

We also use the notation [x, y] for the usual closed segments in Rn with ends x, y: [x, y] =
{λx+ (1− λ)y |λ ∈ [0, 1]}. The degenerated segment [x, x] is just a point {x}. The segments
without one end are (x, y] and [x, y), and (x, y) is the segment in Rn without both ends.

The attainability problem: Let x, y ∈ D and G(x) ≥ G(y). Is y attainable from x by an
admissible path?

The solution of the attainability problem can be found in several steps:

1. Find two vertices of D, vx and vy, that precede x and y, correspondingly. Such vertices
always exist. There may be several such vertices in D. We can use any of them.

2. Construct the graph D̃1 \ UG(y) by deleting from D̃1 all the elements with the labels
γ < G(y).

3. y is attainable from x by an admissible path if and only if vx and vy are connected in

the graph D̃1 \ UG(y).

So, to check the existence of an admissible path from x to y, we should check the inequality
G(x) ≥ G(y) (the necessary condition) and then go up in G values and find the vertices, vx
and vy, that precede x and y, correspondingly (such vertices always exist). Then we should
go down in G values to G(y) and check whether the vertices vx and vy are connected in the

graph D̃1 \ UG(y). The classical problem of determining whether two vertices in a graph are
connected may be solved by many search algorithms [52, 50], for example, by the elementary
breadth-first or depth-first search algorithm.

The procedure “find a vertex vx ∈ D0 that precedes x ∈ D” can be implemented as follows:

1. If x = x∗, then any vertex v ∈ D0 precedes x.
2. If x 	= x∗, then consider the ray rx = {x∗ +λ(x−x∗) |λ ≥ 0}. The intersection rx ∩D

is a closed segment [x∗, x′]. We call x′ the central projection of x onto the border of
D with the center x∗; x′ � x.

3. The central projection x′ always belongs to an interior of a face D′ of D, 0 ≤ dimD′ <
dimD. If dimD′ > 0, then set x := x′, D := D′, and x∗ := argmin{G(z) | z ∈ D′},
and go to step 1.

4. If dimD′ = 0, then it is a vertex v � x we are looking for.

The dimension of the face decreases at each step; hence, after not more than dimD− 1 steps,
we will definitely obtain the desired vertex. A simple example is presented in Figure 1(d).

The information about all connected components of D̃1\Ug for all values of g is summarized
in the tree of G inD, T (Definition 1.2). The tree T can be described as follows (Theorem 3.3):
it is the space of pairs (g,M), where g ∈ [minD G(x),maxD G(x)] and M is a connected

component of D̃1 \Ug, with the partial order relation (g,M) � (g′,M ′) if g ≥ g′ and M ⊆ M ′.
For x, y ∈ D, x � y if and only if π(x) � π(y).

The tree T may be constructed gradually by descending from the maximal value of G,
g = gmax (section 3.3). At g = gmax, the graph D̃1 \ Ug consists of the isolated vertices with

the labels γ = gmax (generically, this is one vertex). Going down in g, we add to D̃1 \ Ug the
elements, vertices, and edges, in descending order of their labels. After adding each element
we record the changes in the connected components of D̃1 \ Ug.

For each point z ∈ T , z = (g,M), its preimage in D, π−1(g,M), may be described by the
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equation G(x) = g supplemented by a set of linear inequalities. Computationally, these linear
inequalities can be produced by a convex hull operation from a finite set. This finite set is
described explicitly in section 3.4.

For each point z = (g,M) the set of all z′ = (g′,M ′) attainable by admissible paths from
z has a simple description, g′ ≤ g, M ′ ⊇ M .

The tree of G in D provides a workbench for the analysis of various questions about
admissible paths. It allows us to reduce the n-dimensional problems in D to some auxiliary
questions about such 1D or even discrete objects as the tree T and the labeled graph D̃1. For
example, we use the thermodynamic tree to solve the following problem of attainable sets: For
a given x ∈ D describe the set of all y � x by a system of inequalities. For this purpose, we
find the image of x in T , π(x), then define the set of all points attainable by admissible paths
from π(x) in T , and finally describe the preimage of this set in D by the system of inequalities
(section 3.4).

1.4. The structure of the paper. In section 2, we present several auxiliary propositions
from convex geometry. We constructively describe the result of the cutting of a convex poly-
hedron D by a convex set U : The description of the connected components of D\U is reduced
to the analysis of the 1D continuum D1 \ U , where D1 is the 1-skeleton of D.

In section 3, we construct the tree of level set components of a strictly convex function
G in the convex polyhedron D and study the properties of this tree. The main result of this
section is the algorithm for construction of this tree (section 3.3). This construction is applied
to the description of the attainable sets in section 3.4. These sections include some practical
recipes, and it is possible to read them independently, immediately after the introduction.
Several examples of the thermodynamic trees for chemical systems are presented in section 4.

2. Cutting of a polyhedron D by a convex set U .

2.1. Connected components of D \ U and of D1 \ U . Let D be a convex polyhedron
in Rn. We use the following notation: Aff(D) is the minimal linear manifold that includes D;
d = dimAff(D) = dimD is the dimension of D; ri(D) is the interior of D in Aff(D); r∂(D)
is the border of D in Aff(D).

For P,Q ⊂ Rn the Minkowski sum is P + Q = {x + y |x ∈ P, y ∈ Q}. The convex hull
(conv) and the conic hull (cone) of a set V ⊂ Rn are

conv(V ) =

{
q∑

i=1

λivi

∣∣∣∣∣ q > 0, v1, . . . , vq ∈ V, λ1, . . . , λq > 0,

q∑
i=1

λi = 1

}
;

cone(V ) =

{
q∑

i=1

λivi

∣∣∣∣∣ q ≥ 0, v1, . . . , vq ∈ V, λ1, . . . , λq > 0

}
.

For a set D ⊂ Rn the following two statements are equivalent (the Minkowski–Weyl theorem):

1. For some real (finite) matrix A and real vector b, D = {x ∈ Rn |Ax ≤ b}.
2. There are finite sets of vectors {v1, . . . , vq} ⊂ Rn and {r1, . . . , rp} ⊂ Rn such that

(5) D = conv{v1, . . . , vq}+ cone{r1, . . . , rp} .
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Every polyhedron has two representations, of types (1) and (2), known as (halfspace) H-
representation and (vertex) V -representation, respectively. We systematically use both these
representations. Most of the polyhedra in our paper are bounded; therefore, for them only
the convex envelope of vertices is used in the V -representation (5).

The k-skeleton of D, Dk, is the union of the closed k-dimensional faces of D:

D0 ⊂ D1 ⊂ · · · ⊂ Dd = D.

D0 consists of the vertices of D, and D1 is a 1D continuum embedded in Rn. We use the
notation D̃1 for the graph whose vertices correspond to the vertices of D and whose edges
correspond to the edges of D, and we call this graph the graph of the 1-skeleton of D.

Let U be a convex subset of Rn (it may be a nonclosed set). We use U0 for the set of
vertices of D that belong to U , U0 = U ∩ D0, and U1 for the set of the edges of D that
have nonempty intersection with U . By default, we consider the closed faces of D; hence, the
intersection of an edge with U either includes some internal points of the edge or consists of
one of its ends. We use the same notation U1 for the set of the corresponding edges of D̃1.

A set W ⊂ P ⊂ Rn is a path-connected component of P if it is its maximal path-connected
subset. In this section, we aim to describe the path-connected components of D \ U . In
particular, we prove that these components include the same sets of vertices as the connected
components of the graph D̃1\U . This graph is produced from D̃1 by deletion of all the vertices
that belong to U0 and all the edges that belong to U1.

Lemma 2.1. Let x ∈ D \U . Then there exists a vertex v ∈ D0 such that the closed segment
[v, x] does not intersect U : [v, x] ⊂ D \ U .

Proof. Let us assume the contrary: for every vertex v ∈ D0 there exists λv ∈ (0, 1] such
that x+λv(v−x) ∈ U . The convex polyhedron D is the convex hull of its vertices. Therefore,
x =

∑
v∈D0

κvv for some numbers κv ≥ 0, v ∈ DO,
∑

v∈D0
κv = 1.

Let
δv =

κv

λv
∑

v′∈D0

κv′
λv′

.

It is easy to check that
∑

v∈D0
δv = 1 and

(6) x =
∑
v∈D0

δv(x+ λv(v − x)) .

According to (6), x belongs to the convex hull of the finite set {x+ λv(v − x) | v ∈ D0} ⊂ U .
U is convex; therefore, x ∈ U , but this contradicts the condition x /∈ U . Therefore, our
assumption is wrong, and there exists at least one v ∈ D0 such that [v, x] ∩ U = ∅.

So, if a point from the convex polyhedron D does not belong to a convex set U , then it
may be connected to at least one vertex of D by a segment that does not intersect U . Let us
demonstrate now that if two vertices of D may be connected in D by a continuous path that
does not intersect U , then these vertices can be connected in D1 by a path that is a sequence
of edges D, which do not intersect U .

Lemma 2.2. Let v, v′ ∈ D0, v, v
′ /∈ U . Suppose that ϕ : [0, 1] → (D \ U) is a continuous

path, ϕ(0) = v, and ϕ(1) = v′. Then there exists a sequence of vertices {v0, . . . , vl} ⊂ (D \U)
such that any two successive vertices, vi, vi+1, are connected by an edge ei,i+1 ⊂ (D1 \ U).
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Proof. Let us first prove the following statement: the vertices v, v′ belong to one path-
connected component of D \ U if and only if they belong to one path-connected component of
D1 \ U .

Let us iteratively transform the path ϕ. On the kth iteration we construct a path that
connects v and v′ in Dd−k \ U , where d = dimD and k = 1, . . . , d − 1. We start from a
transformation of the path in a face of D.

Let S ⊂ Dj be a closed j-dimensional face of D, j ≥ 2, and let ψ : [0, 1] → (Dj \ U) be
a continuous path, ψ(0) = v, ψ(1) = v′, and ψ([0, 1]) ∩ U = ∅. We will transform ψ into a
continuous path ψS : [0, 1] → (Dj \U) with the following properties: (i) ψS(0) = v, ψS(1) = v′,
(ii) ψS([0, 1]) ∩ U = ∅, (iii) ψS([0, 1]) \ S ⊆ ψ([0, 1]) \ S, and (iv) ψS([0, 1]) ∩ ri(S) = ∅. The
properties (i) and (ii) are the same as for ψ, the property (iii) means that all the points of
ψS([0, 1]) outside S belong also to ψ([0, 1]) (no new points appear outside S), and the property
(iv) means that there are no points of ψS([0, 1]) in ri(S). To construct this ψS we consider
two cases:

1. U ∩ ri(S) 	= ∅; i.e., there exists y0 ∈ U ∩ ri(S).
2. U ∩ ri(S) = ∅.

In the first case, let us project any ψ(τ) ∈ ri(S) onto r∂(S) from the center y0. Let y ∈ S,
y 	= y0. There exists a λ(y) ≥ 1 such that y0 + λ(y)(y − y0) ∈ r∂(S). This function λ(y)
is continuous in S \ {y0}. The function λ(y) can be expressed through the Minkowski gauge
functional [32] defined for a set K and a point x:

pK(x) = inf{r > 0 |x ∈ rK}; λ(y) =
(
p(D−y0)(y − y0)

)−1
.

Let us define for any y ∈ ri(S), y 	= y0, a projection πS(y) = y0+λ(y)(y−y0). This projection
is continuous in S \ {y0}, and πS(y) = y if y ∈ r∂(S). It can be extended as a continuous
function onto the whole Dj \ {y0}:

πS(y) =

{
πS(y) if y ∈ S \ {y0},
y if y ∈ Dj \ S.

The center y0 ∈ U . Because of the convexity of U , if y /∈ U , then y0 + λ(y − y0) /∈ U for
any λ ≥ 1. Therefore, the path ψS(t) = πS(ψ(t)) does not intersect U and satisfies all the
requirements (i)–(iv).

Let us consider the second case, U∩ri(S) = ∅. There are the moments of the first entrance
of ψ(t) in S and the last exit of this path from S:

τ1 = min{τ |ψ(τ) ∈ S}, τ2 = max{τ |ψ(τ) ∈ S},

0 ≤ τ1 ≤ τ2 ≤ 1. Let y1 = ψ(τ1) and y2 = ψ(τ2). If y1 = y2, then we can just delete the
loop between τ1 and τ2 from the path ψ(τ) and get the path that does not enter ri(S). So,
let y1 	= y2.

These points belong to r∂(S). Let yS ∈ ri(S) be an arbitrary point in the relative interior
of S which does not belong to the segment [y1, y2] (dimS ≥ 2). The segments [y1, yS ] and
[y2, yS ] do not intersect U for the following reasons: U ∩ S ⊂ r∂(S) (may be empty), neither
y1 nor y2 belong to U , and all other points of the 3-vertex polygonal chain [y1, yS , y2] belong
to ri(S).
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U∩S∩P(y1,y2,yS) y1 
y2 

yS 

Figure 2. Intersection of a face S with the plane P (y1, yS, y2) when U ∩ ri(S) = ∅ (Lemma 2.2, case 2).
In this intersection, U ∩S ⊂ r∂(S) belongs to one side of the polygon (the bold segment). The dashed lines with
arrows represent the 3-vertex polygonal chain [y1, yS, y2]. There exists a path from y1 to y2 along the boundary
of the polygon. In Figure, this is the polygonal chain that follows the solid lines with arrows.

Let P (y1, yS , y2) be a plane that includes the chain [y1, yS , y2]. The intersection S ∩
P (y1, yS , y2) is a convex polygon. The convex set U ∩ S ∩P (y1, yS , y2) belongs to the border
of this polygon. Therefore, it belongs to one side of it (Figure 2) (may be empty) because of
the convexity of the polygon and of the set U . The couple of points y1, y2 cut the border of the
polygon in two connected broken lines. At least one of them does not intersect U (Figure 2).
Let us substitute ψ on the interval [τ1, τ2] by this broken line. The new path does not intersect
ri(S). Let us use for this new path the notation ψS(t). The path ψS does not intersect ri(S)
and U , and all the points on them outside S are the points on the path ψ for the same values
of the argument τ .

So, for any closed face S ⊂ D with dimS = j ≥ 2 and a continuous path ψ : [0, 1] →
(Dj \U) that connects the vertices v, v′ of D (ψ(0) = v, ψ(1) = v′) we construct a continuous
path ψS : [0, 1] → (Dj \U) that connects the same vertices, does not intersect ri(S), and takes
no new values outside S, ψS([0, 1]) \ S ⊆ ψ([0, 1]) \ S.

Let us order the faces S ⊆ D with dimS ≥ 2 in such a way that dimSi ≥ dimSj for
i < j: D = S0, S1, . . . , S�. Let us start from a given path ϕ : [0, 1] → D \ U that connects the
vertices v and v′, and let us apply sequentially the described procedure:

θ = (. . . (((ϕS0)S1)S2) . . .)S�
.

By the construction, this path θ does not intersect any relative interior ri(Sk) (k = 0, 1, . . . , �).
Therefore, the image of θ belongs to D1, θ : [0, 1] → (D1 \ U). It can be transformed into
a simple path in D1 \ U by deletion of all loops (if they exist). This simple path (without
self-intersections) is just the sequence of edges we are looking for.

Lemmas 2.1 and 2.2 allow us to describe the connected components of the d-dimensional
set D \ U through the connected components of the 1D continuum D1 \ U .

Proposition 2.3. Let W1, . . . ,Wq be all the path-connected components of D \ U . Then
Wi ∩D0 	= ∅ for all i = 1, . . . , q, the continuum D1 \U has q path-connected components, and
Wi ∩D1 are these components.

Proof. Due to Lemma 2.1, each path-connected component of D \U includes at least one
vertex of D. According to Lemma 2.2, if two vertices of D belong to one path-connected
component of D \ U , then they belong to one path-connected component of D1 \ U . The
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reverse statement is obvious because D1 ⊂ D and a continuous path in D1 is a continuous
path in D.

We can study connected components of a simpler, discrete object, the graph D̃1. The
path-connected components of D \ U correspond to the connected components of the graph

D̃1 \U . (This graph is produced from D̃1 by deletion of all the vertices that belong to U0 and
all the edges that belong to U1.)

Proposition 2.4. Let W1, . . . ,Wq be all the path-connected components of D \ U . Then the

graph D̃1 \ U has exactly q connected components, and each set Wi ∩ D0 is the set of the

vertices of D of one connected component of D̃1 \ U .
Proof. Indeed, every path between vertices in D1 includes a path that connects these

vertices and is the sequence of edges. (To prove this statement we just have to delete all loops

in a given path.) Therefore, the vertices v1, v2 belong to one connected component of D̃1 \ U
if and only if they belong to one path-connected component of D1 \ U . The rest of the proof
follows from Proposition 2.3.

We proved that the path-connected components of D\U are in one-to-one correspondence

with the components of the graph D̃1 \U (the correspondent components have the same sets
of vertices). In applications, we will meet the following problem. Let a point x ∈ D \ U be
given. Find the path-connected component of D \ U which includes this point. There are
two basic ways to find this component. Assume that we know the connected components of
D̃1 \U . First, we can examine the segments [x, v] for all vertices v of D. At least one of them
does not intersect U (Lemma 2.1). Let it be [x, v0]. We can find the connected component

D̃1 \U that contains v0. The point x belongs to the correspondent path-connected component
of D \U . This approach exploits the V -description of the polyhedron D. The work necessary
for this method is proportional to the number of vertices of D.

Another method is based on projection on the faces of D. Let x ∈ ri(D). We can take
any point y0 ∈ D \ U and find the unique λ1 > 1 such that x1 = y0 + λ1(x − y0) ∈ r∂(D).
Let x1 ∈ ri(S1), where S1 is a face of D. If S1 ∩ U = ∅, then we can take any vertex v0 ∈ S1

and find the connected component D̃1 \ U that contains v0. This component gives us the
answer. If S1 ∩ U 	= ∅, then we can take any y1 ∈ S1 ∩ U and find the unique λ2 > 1 such
that x2 = y1 + λ2(x

1 − y1) ∈ r∂(S). This x2 belongs to the relative boundary of the face S1.
If x2 is not a vertex, then it belongs to the relative interior of some face S2, dimS2 > 0, and
we have to continue. At each iteration, the dimension of faces decreases. After d = dimD
iterations at most we will get the vertex v we are looking for (see also Figure 1) and find the

connected component of D̃1 \U which gives us the answer. Here we exploit the H-description
of D.

2.2. Description of the connected components ofD\U by inequalities. LetW1, . . . ,Wq

be the path-connected components of D \ U .
Proposition 2.5. For any set of indices I ⊂ {1, . . . , q} the set

KI = U
⋃(⋃

i∈I
Wi

)

is convex.
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Proof. Let y1, y2 ∈ KI . We have to prove that [y1, y2] ⊂ KI . Five different situations are
possible:

1. y1, y2 ∈ U ;
2. y1 ∈ U, y2 ∈ Wi, i ∈ I;
3. y1, y2 ∈ Wi, i ∈ I, [y1, y2] ∩ U = ∅;
4. y1, y2 ∈ Wi, i ∈ I, [y1, y2] ∩ U 	= ∅;
5. y1 ∈ Wi, y

2 ∈ Wj, i, j ∈ I, i 	= j.

We will systematically use two simple facts: (i) the convexity of U implies that its intersection
with any segment is a segment, and (ii) if x1 ∈ Wi and x2 ∈ D \Wi, then the segment [x1, x2]
intersects U because Wi is a path-connected component of U .

In case 1, [y1, y2] ⊂ U ⊂ K because of convexity U .

In case 2, there exists a point y3 ∈ (y1, y2) such that [y1, y3) ⊆ U ∩ [y1, y2] ⊆ [y1, y3]. The
segment (y3, y2] cannot include any point x ∈ D \Wi because it does not include any point
from U . Therefore, in this case (y3, y2] ⊂ Wi ⊂ K and y3 ∈ K because it belongs either to U
or to Wi.

In case 3, [y1, y2] ⊂ Wi ⊂ K because Wi is a path-connected component of D \ U and
[y1, y2] ∩ U = ∅.

In case 4, [y1, y2] ∩ U is a segment L with the ends x1, x2. It may be [x1, x2] (y1 <
x1 ≤ x2 < y2), (x1, x2] (y1 ≤ x1 < x2 < y2), [x1, x2) (y1 < x1 < x2 ≤ y2), or (x1, x2)
(y1 ≤ x1 < x2 ≤ y2). This segment cuts [y1, y2] into three segments: [y1, y2] = L1 ∪ L ∪ L2;
L1 includes y1, and L2 includes y2. Therefore, L1 ⊂ Wi, L ⊂ U , and L2 ⊂ Wi because Wi is
a path-connected component of D \ U and U is convex. So, [y1, y2] ⊂ K.

In case 5, [y1, y2] ∩ U is also a segment L with the ends x1, x2. It may be [x1, x2] (y1 <
x1 ≤ x2 < y2), (x1, x2] (y1 ≤ x1 < x2 < y2), [x1, x2) (y1 < x1 < x2 ≤ y2), or (x1, x2)
(y1 ≤ x1 < x2 ≤ y2). This segment cuts [y1, y2] into three segments: [y1, y2] = L1 ∪ L ∪ L2;
L1 includes y1, and L2 includes y2. Therefore, L1 ⊂ Wi, L ⊂ U , and L2 ⊂ Wj because Wi,j

are path-connected components of D \ U and U is convex. So, [y1, y2] ⊂ K.

Typically, the set U is represented by a set of inequalities, for example, G(x) ≤ g. It
may be useful to represent the path-connected components of D \ U by inequalities. For this
purpose, let us first construct a convex polyhedron Q ⊂ U with the same number of path-
connected components in D \ Q, V1, . . . , Vq and with inclusions Wi ⊂ Vi. We will construct
Q as a convex hull of a finite set. Let us select the edges e of D which intersect U , but the
intersection e ∩ U does not include vertices of D. For every such edge we select one point
xe ∈ e ∩ U . The set of these points is Q1. By definition,

(7) Q = conv(U0 ∪Q1) .

Q is convex; hence, we can apply all the previous results about the components of D \ U to
the components of D \Q.

Lemma 2.6. The set U0 ∪Q1 is the set of vertices of Q.

Proof. A point x ∈ U0∪Q1 is not a vertex of Q = conv(U0∪Q1) if and only if it is a convex
combination of other points from this set: there exist x1, . . . , xk ∈ U0 ∪Q1 and λ1, . . . , λk > 0
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such that xi 	= x for all i = 1, . . . , k and

k∑
i=1

λi = 1 ,
k∑

i=1

λixi = x.

If x ∈ U0, then this is impossible because x is a vertex of D and U0∪Q1 ⊂ D. If x ∈ Q1, then
it belongs to the relative interior of an edge of D and, hence, may be a convex combination of
points D from this edge only. By construction, U0 ∪Q1 may include only one internal point
from an edge and in this case does not include a vertex from this edge. Therefore, all the
points from Q1 are vertices of Q.

Lemma 2.7. The set D \Q has q path-connected components V1, . . . , Vq that may be enu-
merated in such a way that Wi ⊂ Vi and Wi = Vi \ U .

Proof. To prove this statement about the path-connected components, let us mention that
Q and U include the same vertices of D and the set U0 and cut the same edges of D. Graphs
D̃1 \ Q and D̃1 \ U coincide. Q ⊂ U because of the convexity of U and the definition of Q.
To finalize the proof, we can apply Proposition 2.4.

Proposition 2.8. Let I be any set of indices from {1, . . . , q}:

(8) Q
⋃(⋃

i∈I
Vi

)
= conv

(
U0

⋃
Q1

⋃(⋃
i∈I

(
D0

⋂
Vi

)))
.

Proof. On the left-hand side of (8) we see the union of Q with the connected components
Vi (i ∈ I). On the right-hand side there is a convex envelope of a finite set. This finite set
consists of the vertices of Q (U0 ∪Q1) and the vertices of D that belong to Vi (i ∈ I). Let us
denote by RI the right-hand side of (8) and by LI the left-hand side of (8).

LI is convex due to Proposition 2.5 applied to Q and Vi. The inclusion RI ⊆ LI is
obvious because LI is convex and RI is defined as a convex hull of a subset of LI . To prove
the inverse inclusion, let us consider the path-connected components of D \ RI . Sets Vj

(j /∈ I) are the path-connected components of D \ RI because they are the path-connected
components of D\Q, Q ⊂ RI , and RI ∩Vj = ∅ for j /∈ I. There exist no other path-connected
components of Q ⊂ RI because all the vertices of Vi (i ∈ I) belong to RI by construction;
hence, D0 \ RI ⊂ ∪j /∈IVj. Due to Lemma 2.1 every path-connected component of D ⊂ RI

includes at least one vertex of D. Therefore, Vj (j /∈ I) are all the path-connected components
of D \RI and D \RI = ∪j /∈IVj. Finally, RI = D \ ∪j /∈IVj = Q ∪ (∪i∈IVi) = LI .

According to Lemma 2.6, each path-connected component Wi ⊂ D \U can be represented
in the form Wi = Vi \U , where Vi is a path-connected component of D \Q. By construction,
Q ⊂ U ; hence

(9) Wi = (Q ∪ Vi) \ U.
If U is given by a system of inequalities, then representations (8) and (9) give us the possibility
of representing Wi by inequalities. Indeed, the convex envelope of a finite set in (8) may be
represented by a system of linear inequalities. If the sets Q∪Vi and U in (9) are represented by
inequalities, then the difference between them is also represented by the system of inequalities.

The description of the path-connected component of D \ U may be constructed by the
following steps:
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A1 

A2 A3 

c* 

U={c|G(c)≤g0} 
a) 

W1` 

W3 W2 

c) A1 

A2 A3 
V3 V2 

R1={c|c2,3≤1/2} 

b) A1 

A2 A3 
V3 V2 

Q={c|c1,2,3≤1/2} V1 

d) A1 

A2 A3 
V3 V2 

A1W1=R1\U 
    ={c|c2,3≤1/2, G(c)>g0} 

V1={c|c1>1/2} 

Figure 3. Construction of the path-connected components Wi of D \ U for the simple example. (a) The
balance simplex D, the set U , and the path-connected components Wi. (b) The polyhedron Q = conv(U0 ∪Q1)
(7) (U0 = ∅; Q1 consists of the middle points of the edges) and the connected components Vi of D \ Q:
Vi = {c ∈ D | ci > 1/2}. (c) The set R1 = conv(U0 ∪ Q1 ∪ (D0 ∩ V1)). (d) The connected components W1

described by the inequalities (as R1 \ U (8)).

1. Construct the graph of the 1-skeleton of D; this is D̃1.
2. Find the vertices of D that belong to U ; this is the set U0.
3. Find the edges of D that intersect U ; this is the set U1.
4. Delete from D̃1 all the vertices from U0 and the edges from U1; this is the graph D̃1\U .

5. Find all the connected components of D̃1\U . Let the sets of vertices of these connected
components be V01, . . . , V0q.

6. Select the edges e of D which intersect U , but the intersection e ∩U does not include
vertices of D. For every such edge select one point xe ∈ e∩U . The set of these points
is Q1.

7. For every i = 1, . . . , q describe the polyhedron Ri = conv(U0 ∪Q1 ∪ V0i).
8. There exist q path-connected components of D \ U : Wi = Ri \ U .

Every step can be performed by known algorithms, including algorithms for the solution of
the double description problem [49, 14, 21] and the convex hull algorithms [55].

Let us use the simple system of three reagents, A1,2,3 (Figure 1) to illustrate the main
steps of the construction of the path-connected components. The polyhedron D is here the
2D simplex (Figure 1(a)). The plane AffD is given by the balance equation c1 + c2 + c3 = 1.
We select U = {c |G(c) ≤ g0} as an example of a convex set (Figure 3(a)). It includes no
vertices of D; hence, U0 = ∅. U intersects each edge of D in the middle point; hence, U1

includes all the edges of D. The graph D̃1 \U consists of three isolated vertices. Its connected
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components are these isolated vertices. Q1 consists of three points, the middle points of the
edges (1/2, 1/2, 0), (1/2, 0, 1/2), and (0, 1/2, 1/2) (in this example, the choice of these points
is unambiguous; see Figure 3(a)).

The polyhedronQ is a convex hull of these three points, that is, the triangle given in Aff(D)
by the system of three inequalities c1,2,3 ≤ 1/2 (Figure 3(b)). The connected components of
D \Q are the triangles Vi given in D by the inequalities ci > 1/2. In the whole R3, these sets
are given by the systems of an equation and inequalities:

Vi = {c | c1,2,3 ≥ 0, c1 + c2 + c3 = 1, ci > 1/2}.

The polyhedron Ri is the convex hull of four points, the middle points of the edges and
the ith vertex (Figure 3(c)). In D, Ri is given by two linear inequalities, cj ≤ 1/2, j 	= i. In
the whole R3, these inequalities should be supplemented by the equation and inequalities that
describe D:

Ri = {c | c1,2,3 ≥ 0, c1 + c2 + c3 = 1, cj ≤ 1/2 (j 	= i)}.
The path-connected components of D \ U , Wi are described as Ri \ U (see Figure 3(d)):

in D we get Wi = {c | cj ≤ 1/2 (j 	= i), G(c) > g0}. In the whole R3,

Wi = {c | c1,2,3 ≥ 0, c1 + c2 + c3 = 1, cj ≤ 1/2 (j 	= i), G(c) > g0}.

Vi are convex sets in this simple example; therefore, it is possible to slightly simplify the
description of the components Wi and to represent them as Vi \ U :

Wi = {c | c1,2,3 ≥ 0, c1 + c2 + c3 = 1, ci > 1/2, G(c) > g0}

(or Wi = {c | ci > 1/2, G(c) > g0} in D).

In the general case (more components and balance conditions), the connected components
Vi may be nonconvex; hence, description of these sets by the systems of linear equations and
inequalities may be impossible. Nevertheless, there exists another version of the description
of Wi where a smaller polyhedron is used instead of Ri.

Let V0i be the set of vertices of a connected component of the graph D̃1 \U . Let Eout(V0i)

be the set of the outer edges of V0i in D̃1; i.e., this is the set of edges of D̃1 that connect
vertices from V0i with vertices from D0 \ V0i. For each e ∈ Eout(V0i) the corresponding edge
e ⊂ D1 intersects U because V0i is the set of vertices of a connected component of the graph
D̃1 \ U .

Let us select a point xe ∈ U ∩ e for each e ∈ Eout(V0i) (we use the same notation for the

edges from D̃1 and the corresponding edges from D1). Let us use the notation

Q0i = {xe | e ∈ Eout(V0i)}.

Proposition 2.9. The path-connected component Wi of D \ U allows the following descrip-
tion:

Wi = conv(Q0i ∪ V0i) \ U.
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Proof. The set Q0i ⊂ U and V0i is the set of vertices of a connected component of the
graph D̃1 \Q0i by construction because Q0i cuts all the outer edges of V0i in D1. The rest of
the proof follows the proofs of Lemma 2.7 and Proposition 2.8.

This proposition allows us to describe Wi by the system of inequalities. For this purpose,
we have to use a convex hull algorithm and describe the convex hull conv(Q0i ∪ V0i) by the
system of linear inequalities and then add the inequality that describes the set \U .

In the simple system (Figure 3), the connected components of the graph D̃1 \ U are the
isolated vertices. The set Q0i for the vertex Ai consists of two middle points of its incident
edges. In Figure 3(b), the set conv(Q0i ∪ V0i) for V0i = {A1} is the triangle V1.

3. Thermodynamic tree.

3.1. Problem statement. Let a real continuous functionG be given in the convex bounded
polyhedron D ⊂ Rn. We assume that G is strictly convex in D, i.e., the set (the epigraph of
G)

epi(G) = {(x, g) |x ∈ D, g ≥ G(x)} ⊂ D × (−∞,∞)

is convex, and for any segment [x, y] ⊂ D (x 	= y), G is not constant on [x, y]. A strictly convex
function on a bounded convex set has a unique minimizer. Let x∗ be the minimizer of G in D,
and let g∗ = G(x∗) be the corresponding minimal value. The level set Sg = {x ∈ D |G(x) = g}
is closed and the sublevel set Ug = {x ∈ D |G(x) < g} is open in D. The sets Sg and D \ Ug

are compact, and Sg ⊂ D \ Ug.
Let x, y ∈ D. According to Corollary 3.4, proven in the next subsection, an admissible

path from x to y in D exists if and only if π(y) belongs to the ordered segment [π(x∗), π(x)].
Therefore, to constructively describe the relation x � y in D we have to solve the following
problems:

1. How do we construct the thermodynamic tree T ?
2. How do we find an image π(x) of a state x ∈ D on the thermodynamic tree T ?
3. How do we describe by inequalities a preimage of an ordered segment of the thermo-

dynamic tree, π−1([w, z]) ⊂ D (w, z ∈ T , z � w)?

3.2. Coordinates on the thermodynamic tree. We get the following lemma directly from
Definition 1.1. Let x, y ∈ D.

Lemma 3.1. x ∼ y if and only if G(x) = G(y) and x and y belong to the same path-
connected component of Sg with g = G(x).

The path-connected components ofD\Ug can be enumerated by the connected components

of the graph D̃1\Ug. The following lemma allows us to apply this result to the path-connected
components of Sg.

Lemma 3.2. Let g > g∗, W1, . . . ,Wq be the path-connected components of D \ Ug, and let
σ1, . . . , σp be the path-connected components of Sg. Then q = p and σi may be enumerated in
such a way that σi is the border of Wi in D.

Proof. G is continuous in D; hence, if G(x) > g, then there exists a vicinity of x in D
where G(x) > g. Therefore, G(y) = g for every boundary point y of D \ Ug in D and Sg is
the boundary of D \ Ug in D.

Let us define a projection θg : D\Ug → Sg by the conditions θg(x) ∈ [x, x∗] and G(θg(x)) =
g. By definition, the inequality G(x) ≥ g holds in D \Ug. The function fx(λ) = G((1−λ)x∗+
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λx) is a strictly increasing, continuous, and convex function of λ ∈ [0, 1], fx(0) = g∗ < g,
fx(1) = G(x) ≥ g. The function fx(λ) depends continuously on x ∈ D \ Ug in the uniform
metrics. Therefore, the solution λx to the equation fx(λ) = g on [0, 1] exists (the intermediate
value theorem), is unique, and continuously depends on x ∈ D \ Ug. The projection θg is
defined as θg(x) = (1− λx)x

∗ + λxx.
The fixed points of the projection θg are elements of Sg. The image of each path-connected

component Wi is a path-connected set. The preimage of every path-connected component σi
is also a path-connected set. Indeed, let θg(x) ∈ σi and θg(y) ∈ σi. There exists a continuous
path from x to y in D \ Ug. It may be composed from three paths: (i) from x to θg(x) along
the line segment [x, θg(x)] ⊂ [x, x∗], (ii) then a continuous path in σi between θg(x) and θg(y)
(it exists because σi is a path-connected component of Sg and it belongs to D \ Ug because
Sg ⊂ D \ Ug) and, finally, (iii) from θg(y) to y along the line segment [θg(y), y] ⊂ [x∗, y].
Therefore, the image of a path-connected component Wi is a path-connected component of
Sg that may be enumerated by the same index i, σi. This σi is the border of Wi in D.

The equivalence class of x ∈ D is defined as [x] = {y ∈ D | y ∼ x}. Let W (x) be a path-
connected component of D \ Ug (g = G(x)) for which θg(W (x)) = [x]. Due to Lemma 3.2,
such a component exists and

(10) W (x) = {y ∈ D | y � x}.

Let us define a one-dimensional continuum Y that consists of the pairs (g,M), where

g∗ ≤ g ≤ gmax and M is a set of vertices of a connected component of D̃1 \ Ug. For each
(g,M) the fundamental system of neighborhoods consists of the sets Vρ (ρ > 0):

(11) Vρ = {(g′,M ′) | (g′,M ′) ∈ Y, |g − g′| < ρ, M ′ ⊆ M}.

Let us define the partial order on Y:

(g,M) � (g′,M ′) if g ≥ g′ and M ⊆ M ′.

Let us introduce the mapping ω : D → Y:

ω(x) = (G(x),W (x) ∩D0).

Theorem 3.3. There exists a homeomorphism between Y and T that preserves the partial
order and makes the following diagram commutative:

D
π ��

ω

��

T��

����
��

��
�

Y
Proof. According to Lemma 3.2, (10), and Proposition 2.4, ω maps the equivalent points

x to the same pair (g,M) and the nonequivalent points to different pairs (g,M). For any
x, y ∈ D, x � y if and only if ω(x) � ω(y).

The fundamental system of neighborhoods in Y may be defined using this partial order.
Let us say that (g,M) is compatible to (g′,M ′) if (g′,M ′) � (g,M) or (g,M) � (g′,M ′).
Then for ρ > 0

Vρ = {(g′,M ′) ∈ Y | |γ − γ′| < ρ and (g′,M ′) is compatible to (g,M)} .
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For sufficiently small ρ this definition coincides with (11).
So, by the definition of T as a quotient space D/ ∼, Y has the same partial order and

topology as T . The isomorphism between Y and T establishes one-to-one correspondence
between the π-image of the equivalence class [x], π([x]), and the ω-image of the same class,
ω([x]).

Y can be considered as a coordinate system on T . Each point is presented as a pair (g,M),

where g∗ ≤ g ≤ gmax and M is a set of vertices of a connected component of D̃1 \ Ug. The
map ω is the coordinate representation of the canonical projection π : D → T . Now, let us
use this coordinate system and the proof of Theorem 3.3 to obtain the following corollary.

Corollary 3.4. An admissible path from x to y in D exists if and only if

π(y) ∈ [π(x∗), π(x)] .

Proof. Let there exist an admissible path from x to y in D, ϕ : [0, 1] → D. Then
π(x) � π(y) in T . Let π(x) = (G(x),M) in coordinates Y. For any v ∈ M , π(y) ∈ [π(x∗), π(v)]
and π(x) ∈ [π(x∗), π(v)].

Assume now that π(y) ∈ [π(x∗), π(x)] and π(x) = (G(x),M). Then the admissible path
from x to y in D can be constructed as follows. Let v ∈ M be a vertex of D. G(v) ≥ G(x)
for each v ∈ M . The straight line segment [x∗, v] includes a point x1 with G(x1) = G(x) and
y1 with G(y1) = G(y). Coordinates of π(x1) and π(x) in Y coincide as well as coordinates
of π(y1) and π(y). Therefore, x ∼ x1 and y ∼ y1. The admissible path from x to y in D
can be constructed as a sequence of three paths: first, a continuous path from x to x1 inside
the path-connected component of SG(x) (Lemma 3.1), then from x1 to y1 along a straight
line, and after that a continuous path from y1 to y inside the path-connected component of
SG(y).

To describe the space T in coordinate representation Y, it is necessary to find the connected
components of the graph D̃1 \ Ug for each g. First, this function,

g �→ the set of connected components of D̃1 \ Ug ,

is piecewise constant. Second, we do not need to solve at each point the computationally heavy
problem of the construction of the connected components of the graph D̃1 \Ug “from scratch.”
The problem of the parametric analysis of these components as functions of g appears to be
much cheaper. Let us present a solution to this problem. At the same time, this is a method
for the construction of the thermodynamic tree in coordinates (g,M).

The coordinate system Y allows us to describe the tree structure of the continuum T . This
structure includes a root, (g∗,D0), edges, branching points, and leaves.

Let M be a connected component of D̃1 \Ug for some g, g∗ < g < gmax. If M � D0, then
the set of all points (g,M) ∈ T has for a given M the form (aM , aM ]×M , aM < aM . We call
this set an edge of T .

If M includes all the vertices of D (M = D0), then the set of all points (g,M) ∈ T has
the form [g∗, aD0 ] ×D0. This may be either an edge (if aD0 > g∗) or just a root, {(g∗,D0)}
(this is possible in 1D systems).

Let us define the numbers aM = inf{g | (g,M) ∈ T }. Let us introduce the set of outer

edges of M in D̃1, Eout(M). This is the set of edges of D̃1 that connect vertices from M with
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vertices from D0 \M . We keep the same notation, Eout(M), for the set of the corresponding
edges of D:

(12) aM = max
e∈Eout(M)

min{G(x) |x ∈ e}.

This number, aM , is the “cutting value” of G for M . It cuts M from the other vertices of

D̃1 in the following sense: if we delete from D̃1 all the edges e with the label values < aM ,
then M will remain attached to some vertices from D0 \M . If we delete the edges with the
label values ≤ aM , then M becomes disconnected from D0 \M . There is the only connected

component of D̃1 \ UaM that includes M , M ′ � M . The pair (aM ,M ′) ∈ T is a branching
point of T . The edge (aM , aM ]×M connects two vertices, the upper vertex (aM ,M) and the
lower vertex, (aM ,M ′).

If M consists of one vertex, M = {v}, then the point (G(v), {v}) is a leaf of T .

3.3. Construction of the thermodynamic tree. To construct the tree of G in D we need
the graph D̃1 of the 1-skeleton of the polyhedron D. Elements of D̃1 should be labeled by
the values of G. Each vertex v is labeled by the value γv = G(v), and each edge e = [v,w] is
labeled by the minimal value of G on the segment [v,w] ⊂ D, ge = min[v,w]G(x). We need
also the minimal value g∗ = minD{G(x)} because the root of the tree is (g∗,D0).

The strictly convex function G achieves its local maxima in D only in vertices. The vertex
v is a (local) maximizer of g if ge < γv for each edge e that includes v. The leaves of the
thermodynamic tree are pairs (γv , {v}) for the vertices that are the local maximizers of G.

As a preliminary step of the construction, we arrange and enumerate the labels of the
elements of D̃1, the vertices and edges, in descending order. Let there exist l different label
values: gmax = a1 > a2 > · · · > al. Each ak is a value γv = G(v) at a vertex v ∈ D0 or the
minimum of G on an edge e ⊂ D1 (or both). Let Ai be the set of vertices v ∈ D0 with γv = ai,
and let Ei be the set of edges of D1 with ge = ai (i = 1, . . . , l).

Let us construct the connected components of the graph D̃1 \Ug starting from a1 = gmax.
The function G is strictly convex; hence, a1 = γv for a set of vertices A1 ⊂ D0, but it is
impossible that a1 = ge for an edge e; hence, E1 = ∅.

The set of connected components of D̃1 \ Ug is the same for all g ∈ (ai+1, ai]. For an

interval (a2, a1] the connected components of D̃1 \Ug are the one-element sets {v} for v ∈ A1.

For g ∈ [g∗, al] the graph D̃1 \ Ug includes all the vertices and edges of D̃1, and, hence, it
is connected for this segment. Let us take, formally, al+1 = g∗.

Let Li = {M i
1, . . . ,M

i
ki
} be the set of the connected components of D̃1\Ug for g ∈ (ai, ai−1]

(i = 1, . . . , l). Each connected component is represented by the set of its vertices M i
j . Let us

describe the recursive procedure for the construction of Li:
1. Let us take formally L0 = ∅.
2. Assume that Li−1 is given and i ≤ l. Let us find the set Li of connected components

of D̃1 \ Ug for g = ai (and, therefore, for g ∈ (ai+1, ai]).
• Add the one-element sets {v} for all v ∈ Ai to the set

Li−1 = {M i−1
1 , . . . ,M i−1

ki−1
}.

Denote this auxiliary set of sets as L̃i,0 = {M1, . . . ,Mq}, where q = ki−1 + |Ai|.
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• Enumerate the edges from Ei in an arbitrary order: e1, . . . , e|Ei|. For each k =

0, . . . , |Ei|, create recursively an auxiliary set of sets L̃i,k by the union of some of

elements of L̃k−1: Let L̃i,k−1 be given, and let ek connect the vertices v and v′.
If v and v′ belong to the same element of L̃i,k−1, then L̃i,k = L̃i,k−1. If v and v′

belong to the different elements of L̃i,k−1, M and M ′, then L̃i,k is produced from

L̃i,k−1 by the union of M and M ′:

L̃i,k = (L̃i,k−1 \ {M} \ {M ′}) ∪ {M ∪M ′}

(we delete two elements, M and M ′, from L̃i,k−1 and add a new element M ∪M ′).
The set Li of connected components of D̃1 \ Ug for g = ai is Li = L̃i,|Ei|.

Generically, all the labels of the graph D̃1 vertices and edges are different, and the sets Ei

and Ai include not more than one element. Moreover, for each i either Ei or Ai is generically
empty, and the description of the recursive procedure may be simplified for the generic case:

1. Let us take formally L0 = ∅.
2. Assume that Li−1 is given and i ≤ l.

• If ai is a label of a vertex v, ai = γv, then add the one-element set {v} to the set
Li−1: Li = Li−1 ∪ {{v}}.

• Let ai be a label of an edge e = [v, v′]. If v and v′ belong to the same element of
Li−1, then Li = Li−1. If v and v′ belong to the different elements of Li−1, M and
M ′, then Li is produced from Li−1 by the union of M and M ′ (delete elements
M and M ′, and add an element M ∪M ′).

The described procedure gives us the sets of connected components of D̃1 \ Ug for all
g, and, therefore, we get the tree T . The descent from the higher values of G allows us to
avoid the solution of the computationally more expensive problem of the calculation of the
connected components of a graph at any level of G.

3.4. The problem of attainable sets. In this section, we demonstrate how to solve the
problem of attainable sets. For given x ∈ D (an initial state) we describe the attainable set

Att(x) = {y ∈ D |x � y}

by a system of inequalities. Let the tree T of G in D be given, and let all the pairs (g,M) ∈ T
be described. We also use the notation Att(z) for sets attainable in T from z ∈ T .

First, let us describe the preimage of a point (g,M) ∈ T in D. It can be described by the
equation G(x) = g and a set of linear inequalities. For each edge e we select a minimizer of
G on e, xe = argmin{G(x) |x ∈ e} (we use the same notation for the elements of the graph

D̃1 and of the continuum D1). Let

QM = {xe | e ∈ Eout(M)}.

In particular, aM = max{G(x) |x ∈ QM}.
The following proposition is a direct consequence of Proposition 2.9.
Proposition 3.5. The preimage of (g,M) in D is a set

(13) π−1(g,M) = {x ∈ conv(QM ∪M) |G(x) = g}.
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The sets M and QM in (13) do not depend on the specific value of g. It is sufficient that
the point (g,M) ∈ T exists.

Let us consider the second projection of T , i.e., the set of all connected components of
the graph D̃1 \ Ug for all g. For a connected component M , the lower chain of connected
components is a sequence M = M1 � M2 � · · · � Mk. (“Lower” here means the descent in
the natural order in T , �.) For a given initial element M = M1 the maximal lower chain of
M is the lower chain of M that cannot be extended by adding new elements. By construction
of connected components, the maximal lower chain of M is unique for each initial element M .
In the maximal lower chain aMi

= aMi+1 .
For each set of values H ⊂ (aM , aM ] the preimage of the set H ×M ⊂ T is given by (13)

as

(14) π−1(H ×M) = {x ∈ conv(QM ∪M) |G(x) ∈ H}.

We describe the set Att(x) for x ∈ D by the following procedures: (i) find the projection
π(x) of x onto T , (ii) find the attainable set in T from π(x), Att(π(x)), and (iii) find the
preimage of this set in D:

(15) Att(x) = π−1(Att(π(x))).

The attainable set Att(g,M) in T from (g,M) ∈ T is constructed as a union of edges and
its parts. Let M = M1 � M2 � · · · � Mk = D0 be the maximal lower chain of M . Then

Att(g,M) =(a1, g] ×M1 ∪ (a2, a1]×M2 ∪ · · ·
∪ (ak−1, ak−2]×Mk−1 ∪ [ak, ak−1]×Mk,

(16)

where ai = aMi
.

To find the preimage of Att(g,M) in D we have to apply formula (14) to each term of
(16). In section 1.3 we demonstrated how to find π(x). Therefore, each step of the solution
of the problem of attainable set (15) is presented.

4. Chemical thermodynamics: Examples.

4.1. Skeletons of the balance polyhedra. In chemical thermodynamics and kinetics, the
variable Ni is the amount of the ith component in the system. The balance polyhedron D is
described by the positivity conditionsNi ≥ 0 and the balance conditions (1) bi(N) = const (i =
1, . . . ,m). Under the isochoric (the constant volume) conditions, the concentrations ci also
satisfy the balance conditions, and we can construct the balance polyhedron for concentrations.
Sometimes, the balance polyhedron is called the reaction simplex with some abuse of language
because it is not obligatorily a simplex when the number m of the independent balance
conditions is greater than one.

The graph D̃1 depends on the values of the balance functionals bi = bi(N) =
∑n

j=1 a
j
iNj .

For the positive vectors N , the vectors b with coordinates bi = bi(N) form a convex polyhedral

cone in Rm. Let us denote this cone by Λ. D̃1(b) is a piecewise constant function on Λ.
Sets with various constant values of this function are cones. They form a partition of Λ.
Analysis of this partition and the corresponding values of D̃1 can be done by the tools of
linear programming [26]. Let us present several examples.
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Figure 4. The balance polygon D on the plane with coordinates [S] and [ES] for the four-component
enzyme-substrate system S, E, ES, P with two balance conditions, bS = [S] + [ES] + [P ] = const and bE =
[E] + [ES] = const.

In the first example, the reaction system consists of four components: the substrate S, the
enzyme E, the enzyme-substrate complex ES, and the product P . We consider the system
under constant volume. We denote the concentrations by [S], [E], [ES], and [P ]. There are
two balance conditions: bS = [S] + [ES] + [P ] = const and bE = [E] + [ES] = const.

For bS > bE the polyhedron (here the polygon) D is a trapezium (Figure 4(a)). Each
vertex corresponds to two components that have nonzero concentrations in this vertex. For
bS > bE there are four such pairs, (ES,P ), (ES,S), (E,P ), and (E,S). For two pairs there
are no vertices: for (S,P ) the value bE is zero, and for (ES,E) it should be bS < bE . When
bS = bE , two vertices, (ES,P ) and (ES,S), transform into one vertex with one nonzero
component, ES, and the polygon D becomes a triangle (Figure 4(b)). When bS < bE , then
D is also a triangle, and a vertex ES transforms in this case into (ES,E) (Figure 4(c)).

For the second example, we select a system with six components and two balance condi-
tions: H2, O2, H, O, H2O, OH,

bH = 2NH2 +NH + 2NH2O +NOH,

bO = 2NO2 +NO +NH2O +NOH.

The cone Λ is a positive quadrant on the plane with the coordinates bH, bO. The graph
D̃1(b) is constant in the following cones in Λ (bH, bO > 0): (a) bH > 2bO, (b) bH = 2bO, (c)
2bO > bH > bO, (d) bH = bO, and (e) bH < bO (Figure 5).

The cases (a) bH > 2bO, (c) 2bO > bH > bO, and (e) bH < bO (Figure 5) are regular: there
are two independent balance conditions, and for each vertex there are exactly two components
with nonzero concentration. In case (a) (bH > 2bO), if bH → 2bO, then two regular vertices,
H2, H2O and H, H2O, join in one vertex (case (b)) with only one nonzero concentration,
H2O (Figure 6(a)). This vertex explodes in three vertices O, H2O; O2, H2O; and H2O,OH
when bH becomes smaller than 2bO (case (c), 2bO > bH > bO) (Figure 6(a)). Analogously, in
the transition from the regular case (c) to the regular case (e) through the singular case (d)
(bH = bO) three vertices join in one, OH, which explodes in two (Figure 6(b)).

For the modeling of hydrogen combustion, the eight-component model is usually used:
H2, O2, H, O, H2O, OH, H2O2, HO2. In Figure 7 the graph D̃1 is presented for one particular
relation between bH and 2bO, bH = 2bO. This is the so-called stoichiometric mixture, where
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Figure 5. The graph ˜D1(b) of the 1-skeleton of the balance polyhedron for the six-component system, H2,
O2, H, O, H2O, OH, as a piecewise constant function of b = (bH, bO). For each vertex the components which
have nonzero concentrations at this vertex are indicated.

proportion between bH and 2bO is the same as in the “product,” H2O.

4.2. Examples of the thermodynamic tree. In this section, we present two examples of
the thermodynamic tree. First, let us consider the trapezium (Figure 4(a)). Let us select the
order of numbers γv and ge according to Figure 8. The vertices and edges are enumerated
in order of γv and ge (starting from the greatest values). The tree is presented in Figure 8.

On the right, the graphs D̃1 \ Ug are depicted for all intervals (ai−1, ai]. For (γ2, γ1] it is just
a vertex v1. For (g1, γ2] it consists of two disjoint vertices, v1 and v2. For (γ3, g1] these two

vertices are connected by an edge. On the interval (g2, γ3] the graph D̃1 \Ug is an edge (v1, v2)
and an isolated vertex v3. On (γ4, g2] all three vertices v1, v2, and v3 are connected by edges.

For (g3, γ4] the isolated vertex v4 is added to the graph D̃1 \Ug. For g ≤ g3 the graph D̃1 \Ug

includes all the vertices and is connected.

For the second example (Figure 9) we selected the six-component system (Figure 5) with
the stoichiometric hydrogen-oxygen ratio, bH = 2bO. The selected order of numbers γi, gj is
presented in Figure 9.

5. Conclusion. We studied dynamical systems that obey a continuous strictly convex
Lyapunov function G in a positively invariant convex polyhedron D. Convexity allows us to
transform n-dimensional problems about attainability and attainable sets into an analysis of
1D continua and discrete objects.
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Figure 6. Transformations of the graph ˜D1(b) with changes of the relation between bH and bO. (a) Transi-
tion from the regular case bH > 2bO to the regular case 2bO > bH > bO through the singular case bH = 2bO. (b)
Transition from the regular case 2bO > bH > bO to the regular case bH < bO through the singular case bH = bO.

We construct the tree (the Adelson-Velskii–Kronrod–Reeb (AKR) tree [1, 42, 56]) of the
function G in D and call this 1D continuum the thermodynamic tree.

The thermodynamic tree is a tool to solve the “attainability problem”: is there a contin-
uous path between two states, x and y, along which the conservation laws hold, the concen-
trations remain nonnegative, and the relevant thermodynamic potential G (Gibbs energy, for
example) monotonically decreases? This question arises often in nonequilibrium thermody-
namics and kinetics. The analysis of the admissible paths can be considered as a dynamical
analogue of the study of the steady states’ feasibility in chemical and biochemical kinetics. In
this recent study, the energy balance method, the stoichiometric network theory, the entropy
production analysis, and the advanced algorithms of convex geometry of polyhedral cones are
used [8, 54].

The obvious inequality, G(x) ≥ G(y), is a necessary but not a sufficient condition for
existence of an admissible path from x to y. In 1D systems, the space of states is an interval,
and the thermodynamic tree has two leaves (the ends of the interval) and one root (the
equilibrium). In such a system, a spontaneous transition from a state x to a state y is allowed
by thermodynamics if G(x) ≥ G(y) and x and y are on the same side of the equilibrium, i.e.,
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H2, OH 

H2, O2 

H, O2 

H, OH 

H, O 

H2, O  H2O 

H2, HO2 H2, H2O2 

H, HO2 H, H2O2 

Figure 7. The graph ˜D1 for the eight-component system, H2, O2, H, O, H2O, OH, H2O2, HO2, for
the stoichiometric mixture, bH = 2bO. The vertices that also correspond to the six-component mixture are
distinguished by bold font.

if they belong to the same branch of the thermodynamic tree. This is just a well-known rule:
“it is impossible to overstep the equilibrium in 1D systems.”

The construction of the thermodynamic tree gives us the multidimensional analogue of
this rule. Let π : D → T be the natural projection of the balance polyhedron D on the
thermodynamic tree T . A spontaneous transition from a state x to a state y is allowed
by thermodynamics if and only if π(y) ∈ [π(x), π(N∗)], where N∗ is the equilibrium and
[π(x), π(N∗)] is the ordered segment.

In this paper, we developed methods for solving the following problems:

1. How do we construct the thermodynamic tree T ?
2. How do we solve the attainability problem?
3. How do we describe the set of all states attainable from a given initial state x?

For this purpose, we analyzed the cutting of a convex polyhedron by a convex set and
developed the algorithm for construction of the tree of level set components of a convex
function in a convex polyhedron. In this algorithm, the restriction of G onto the 1-skeleton
of D is used. This finite family of convex functions of one variable includes all necessary
information for analysis of the tree of the level set component of the convex function G of
many variables.

In high dimensions, some steps of our analysis become computationally expensive. The
most expensive operations are the convex hull (description of the convex hull of a finite set
by linear inequalities) and the double description operations (description of the faces of a
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Figure 8. The thermodynamic tree for the four-component enzyme-substrate system S, E, ES, P (Figure
4) with excess of substrate: bS > bE (case (a)). The vertices and edges are enumerated in order of γv and ge
(starting from the greatest values). The order of these numbers is represented in the Figure. On the right, the

graphs ˜D1 \ Ug are depicted. The solid bold line on the tree is the thermodynamically admissible path from the
initial state E,S (enzyme plus substrate) to the equilibrium. There are leaves at all levels g = γi. There are
branching points at g = g1,2,3 and no vertices at g = g4.

polyhedron given by a set of linear inequalities). Therefore, in high dimensions some of the
problem may be modified; for example, instead of the explicit description of the convex hull,
it is possible to use the algorithm for solution of a problem: does a point belong to this
convex hull [55]? The computational aspects of the discussed problems in higher dimensions
deserve more attention, and the proper modifications of the problems should be elaborated.
For example, the following two problems need to be solved efficiently:

• Find the maximal and the minimal values of any linear function f in a class of ther-
modynamic equivalence.

• Evaluate the maximum and the minimum of dG/dt in any class of thermodynamic
equivalence: −σ ≤ dG/dt ≤ −σ ≤ 0.

For any w ∈ T , the solution of the first problem allows us to find an interval of values of
any linear function of state in the corresponding class of thermodynamic equivalence. We can
use the results of section 2.2 to reformulate this problem as the convex programming problem.

The second problem gives us the possibility of considering the dynamics of relaxation on
T . On each interval on T we can write

(17) −σ(g) ≤ dg/dt ≤ −σ(g) ≤ 0,
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Figure 9. The thermodynamic tree for the six-component H2–O2 system, H2, O2, H, O, H2O, OH, with
the stoichiometric hydrogen-oxygen ratio, bH = 2bO (Figure 5(b)). The order of numbers γi, gj is presented in

the Figure. On the right, the graph ˜D1 \Ug is represented for g = g10. For g ≤ g10, the graph ˜D1 \Ug includes
all the vertices and is connected. The solid bold line on the tree is the thermodynamically admissible path from
the initial state H2,O2 to the equilibrium. There are leaves at all levels g = γi. There are branching points at
g = g1−4,7,10 and no vertices at g = g5,6,8,9.

where the functions σ(g), σ(g) ≥ 0 depend on the interval on T .

This differential inequality (17) will be a tool for the study of the dynamics of relax-
ation and may be considered as a reduced kinetic model that substitutes dynamics on the
d-dimensional balance polyhedron D by dynamics on the 1D dendrite. The problem of the
construction of the reduced model (17) is closely related to the following problem [66]: “Can
one establish a lower bound on the entropy production, in terms of how much the distribution
function departs from thermodynamical equilibrium?” In 1982, Cercignani [12] proposed a
simple linear estimate for σ(g) for the Boltzmann equation (Cercignani’s conjecture). After
that, these estimates were studied and improved by many authors [15, 11, 65, 66], and now
the state of the art achieved for the Boltzmann equation gives us some hints as to how to
create the relaxation model (17) on the thermodynamic tree for general kinetic systems. This
may be the next step in the study of thermodynamic trees.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

276 ALEXANDER N. GORBAN

REFERENCES

[1] G. M. Adelson-Velskii and A. S. Kronrod, About level sets of continuous functions with partial
derivatives, Dokl. Akad. Nauk SSSR, 49 (1945), pp. 239–241.

[2] P. M. Alberti, B. Crell, A. Uhlmann, and C. Zylka, Order structure (majorization) and irreversible
processes, in Vernetzte Wissenschaften: Crosslinks in Natural and Social Sciences, P. J. Plath and
E.-Chr. Hass, eds., Logos Verlag, Berlin, 2008, pp. 281–290.

[3] P. M. Alberti and A. Uhlmann, Stochasticity and Partial Order: Doubly Stochastic Maps and Unitary
Mixing, Math. Appl. 9, D. Reidel, Dordrecht, Boston, London, 1982.

[4] V. I. Arnold, On the representability of functions of two variables in the form χ(φ(x) + ψ(y)), Uspekhi
Mat. Nauk, 12 (1957), pp. 119–121.

[5] V. I. Arnold, From Hilbert’s superposition problem to dynamical systems, in The Arnoldfest, Fields Inst.
Commun. 24, AMS, Providence, RI, 1999, pp. 1–18.

[6] M. L. Balinski, An algorithm for finding all vertices of convex polyhedral sets, J. Soc. Indust. Appl.
Math., 9 (1961), pp. 72–88.

[7] A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific, Singapore, 1998.
[8] D. A. Beard, H. Qian, and J. B. Bassingthwaighte, Stoichiometric foundation of large-scale bio-

chemical system analysis, in Modelling in Molecular Biology, G. Ciobanu and G. Rozenberg, eds.,
Springer, Berlin, Heidelberg, New York, 2004, pp. 1–21.

[9] V. I. Bykov, Comments on “Structure of complex catalytic reactions: Thermodynamic constraints in
kinetic modeling and catalyst evaluation,” Ind. Eng. Chem. Res., 26 (1987), pp. 1943–1944.

[10] L. Boltzmann, Lectures on Gas Theory, University of California Press, Berkeley, CA, 1964.
[11] E. Carlen and M. Carvalho, Entropy production estimates for Boltzmann equations with physically

realistic collision kernels, J. Statist. Phys., 74 (1994), pp. 743–782.
[12] C. Cercignani, H-theorem and trend to equilibrium in the kinetic theory of gases, Arch. Mech. Stos., 34

(1982), pp. 231–241.
[13] J. J. Charatonik, Unicoherence and multicoherence, in Encyclopedia of General Topology, Elsevier,

New York, 2003, pp. 331–333.
[14] N. V. Chernikova, An algorithm for finding a general formula for nonnegative solutions of system of

linear inequalities, USSR Comput. Math. Math. Phys., 5 (1965), pp. 228–233.
[15] L. Desvillettes, Entropy dissipation rate and convergence in kinetic equations. Comm. Math. Phys.,

123 (1989), pp. 687–702.
[16] H. Doraiswamy and V. Natarajan, Efficient algorithms for computing Reeb graphs, Comput. Geom.,

42 (2009), pp. 606–616.
[17] A. Einstein, Strahlungs-Emission und -Absorption nach der Quantentheorie, Verhandlungen der

Deutschen Physikalischen Gesellschaft, 18 (1916), pp. 318–323.
[18] M. Feinberg and D. Hildebrandt, Optimal reactor design from a geometric viewpoint–I. Universal

properties of the attainable region, Chem. Eng. Sci., 52 (1997), pp. 1637–1665.
[19] C. Filippi-Bossy, J. Bordet, J. Villermaux, S. Marchal-Brassely, and C. Georgakis, Batch

reactor optimization by use of tendency models, Comput. Chem. Eng., 13 (1989), pp. 35–47
[20] A. T. Fomenko and T. L. Kunii, eds., Topological Modeling for Visualization, Springer, Berlin, 1997.
[21] K. Fukuda and A. Prodon, Double description method revisited, in Combinatorics and Computer

Science, Lecture Notes in Comput. Sci. 1120, Springer-Verlag, Berlin, 1996, pp. 91–111.
[22] J. Gagneur and S. Klamt, Computation of elementary modes: A unifying framework and the new

binary approach, BMC Bioinformatics, 5 (2004), 175.
[23] D. Glasser, D. Hildebrandt, and C. Crowe, A geometric approach to steady flow reactors: The

attainable region and optimisation in concentration space, Ind. Eng. Chem. Res., 26 (1987), pp. 1803–
1810.

[24] A. N. Gorban, Invariant sets for kinetic equations, React. Kinet. Catal. Lett., 10 (1979), pp. 187–190.
[25] A. N. Gorban, Methods for qualitative analysis of chemical kinetics equations, in Numerical Methods of

Continuum Mechanics, Vol. 10, Institute of Theoretical and Applied Mechanics, Novosibirsk, USSR,
1979, pp. 42–59 (in Russian).

[26] A. N. Gorban, Equilibrium Encircling. Equations of Chemical Kinetics and Their Thermodynamic Anal-
ysis, Nauka, Novosibirsk, 1984 (in Russian).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THERMODYNAMIC TREE 277

[27] A. N. Gorban, P. A. Gorban, and G. Judge, Entropy: The Markov ordering approach, Entropy, 12
(2010), pp. 1145–1193.

[28] A. N. Gorban, B. M. Kaganovich, S. P. Filippov, A. V. Keiko, V. A. Shamansky, and I. A.

Shirkalin, Thermodynamic Equilibria and Extrema: Analysis of Attainability Regions and Partial
Equilibria, Springer, New York, 2006.

[29] A. N. Gorban and G. S. Yablonskii, On one unused possibility in planning of kinetic experiment,
Dokl. Akad. Nauk SSSR, 250 (1980), pp. 1171–1174.

[30] A. N. Gorban and G. S. Yablonskii, Extended detailed balance for systems with irreversible reactions,
Chem. Eng. Sci., 66 (2011), pp. 5388–5399.

[31] A. N. Gorban, G. S. Yablonskii, and V. I. Bykov, Path to equilibrium, in Mathematical Problems of
Chemical Thermodynamics, Nauka, Novosibirsk, 1980, pp. 37–47 (in Russian). English translation:
Int. Chem. Eng., 22 (1982), pp. 368–375.

[32] P. M. Gruber and J. M. Wills, eds., Handbook of Convex Geometry, Volume A, North–Holland,
Amsterdam, 1993.

[33] K. M. Hangos, Engineering model reduction and entropy-based Lyapunov functions in chemical reaction
kinetics, Entropy, 12 (2010), pp. 772–797.

[34] D. Hildebrandt and D. Glasser, The attainable region and optimal reactor structures, Chem. Eng.
Sci., 45 (1990), pp. 2161–2168.

[35] M. Hill, Chemical product engineering: The third paradigm, Comput. Chem. Eng., 33 (2009), pp. 947–
953.

[36] F. Horn, Attainable regions in chemical reaction technique, in The Third European Symposium on
Chemical Reaction Engineering, Pergamon Press, London, 1964, pp. 1–10.

[37] B. M. Kaganovich, A. V. Keiko, and V. A. Shamansky, Equilibrium thermodynamic modeling of
dissipative macroscopic systems, Adv. Chem. Engrg., 39 (2010), pp. 1–74.

[38] S. Kauchali, W. C. Rooney, L. T. Biegler, D. Glasser, and D. Hildebrandt, Linear programming
formulations for attainable region analysis, Chem. Eng. Sci., 57 (2002), pp. 2015–2028.
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pentier, A. Lesne, and N. K. Nikolski, eds., Springer, Berlin, 2007, pp. 177–186.

[63] R. L. Smith and M. F. Malone, Attainable regions for polymerization reaction systems, Ind. Eng.
Chem. Res., 36 (1997), pp. 1076–1084.

[64] W. Stuetzle, Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample,
J. Classification, 20 (2003), pp. 25–47.

[65] G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium
for the spatially homogeneous Boltzmann equation, Comm. Math. Phys., 203 (1999), pp. 667–706.

[66] C. Villani, Cercignani’s conjecture is sometimes true and always almost true, Comm. Math. Phys., 234
(2003), pp. 455–490.
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