
UNIVERSAL EXPANSION OF THREE-PARTICLE DISTRIBUTION FUNCTION 

N. N. Bugaenko, A. N. Gorban', and I. V. Karlin 

A universal, i.e., not dependent on the Hamiltonian of the two-particle 
interaction, expansion of the equilibrium three-particle distribution 
function with respect to the two-particle correlation functions is 
constructed. A diagram technique that permits systematic calculation 
of the coefficients of this expansion is proposed. In particular, it 
is established that allowance for the first four orders in the absence 
of long-range correlations gives the Kirkwood approximation. Correc- 
tions to the Kirkwood approximation both in the presence and absence of 
long-range correlations are found. 

1. Introduction 

One of the central problems in statistical mechanics is that of finding closed equa- 
tions for the partial distribution functions. Two approaches can be distinguished (for 
more details, see, for example, [1-3]). The first is based on closure of the equilibrium 
BBGKY hierarchy and reduces to approximation of the partial distribution functions 
(usually the three- or four-particle functions) by an expression that contains the 
partial distribution functions of lower order. In particular, Born-Green theory, which 
is based on the Kirkwood superposition approximation for the three-particle distribution 
function, is obtained in this manner. 

The second approach is based on the Ornstein-Zernike equation and various forms of 
virial expansion. 

It has often been noted [1,2] that the Kirkwood approximation (and also more 
complicated forms of closure) has not yet been established from first principles; its 
domain of applicability has also not been established. 

In this paper, we consider classical systems with two-body interaction and obtain a 
universal (independent of the Hamiltonian) expansion of the three-particle distribution 
function with respect to the two-particle correlation functions. In particular, we 
establish that allowance for the first few orders of the expansion in the absence of long- 
range correlations leads to the Kirkwood approximation. We find the first corrections to 
the Kirkwood approximation both in the presence and the absence of long-range correlations. 
Our point of departure is the construction of a quasi-equilibrium ensemble for given two- 
particle distribution function [4]. 

2. Reduced Distribution Functions and Variational Principle 

We consider a system consisting of N identical structureless classical particles in 
a macroscopic volume V. A complete statistical description is determined by the N-particle 
distribution function FN(X l ..... XN), where x i = (ri, Pi) are the phase variables of 
particle i: the radius vector r i and momentum vector Pi" We denote b$ B~ the range of 
allowed values of x i. The function F N is non-negative for all x i in B~, is symmetric with 
respect to all permutations of the arguments x 1, ..., x N, and satisfies the normalization 
condition 

I FN (xl . . . . . .  xN) dxl . .  �9 z -( 1 ) dxN 1. 

Here and in  what  f o l l o w s ,  B~ i s  t h e  C a r t e s i a n  p r o d u c t  o f  k r e g i o n s l B v  ~, dx~=d3rid~p, We 
d e f i n e  t h e  s - p a r t i c l e  d i s t r i b u t i o n  f u n c t i o n s  F,(N)(x~ . . . . .  xs), s i=i . . . .  , N - - t :  
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F s ( N ) = ( N ! / ( N - - 8 ) ! )  ~ F N(x l  . . . . .  XN) dXs+. . . dxN. (2) 
p~-s 

The subscript N means that we consider a system of a finite number N of particles. The 
passage to the thermodynamic limit N § =, V § =, N/V = n = const is made at the end of 
the calculations, and the subscript N is omitted in the limiting expressions. 

We consider the N-particle entropy SN[FN]: 

kB i I FN In FN dxz. �9 �9 dxN, ( 3 )  SN [FN] 
BVN 

where  k B i s  B o l t z m a n n ' s  c o n s t a n t ;  in  (3 )  we have  o m i t t e d  a c o n s t a n t  t h a t  i s  u n i m p o r t a n t  
f o r - w h a t  f o l l o w s .  In  a c c o r d a n c e  w i t h  G i b b s ' s  v a r i a t i o n a l  p r i n c i p l e  [ 5 ] ,  t h e  c a n o n i c a l  
distribution function F~ realizes a conditional maximum of the entropy (3) for given mean 
value of the Hamiltonian and the normalization (i). For systems with two-body interaction, 
the equilibrium F~ can be determined in two stages; we first find the quasi-equilibrium 
distribution F;[F2<~)] that realizes the maximum of SN[FN] for given two-particle distribu- 
tion function F2<~) ~ and the normalization (i), and we then determine the equilibrium 
distribution that maximizes the quasi-equilibrium entropy S~[F~[Fs~]] for given mean energy 
of a pair of particles. The two paths for the determination of F~ can be represented 
schematically in the form of the diagram 

[&]  = F2(N) " ~  HN> = EN (4)  

where H 2 and H N a re  t he  H a m i l t o n i a n s  o f  t he  two p a r t i c l e s  and the  N p a r t i c l e s ,  and E 2 
and E N are  t he  c o r r e s p o n d i n g  mean e n e r g i e s  ( t h e  n o r m a l i z a t i o n  c o n d i t i o n  i s  o m i t t e d ) .  For 
p a r t i c l e s  w i t h  two-body i n t e r a c t i o n ,  t he  d iagram (4)  i s  commutat ive -- success i ve  t r a n s i t i o n  
a long t he  v e r t i c a l  and h o r i z o n t a l  s i des  o f  t he  t r i a n g l e  i n  the  d i r e c t i o n  o f  t he  arrows i s  
e q u i v a l e n t  to  t r a n s i t i o n  a long  t he  hypo tenuse .  We s h a l l  c o n s i d e r  systems w i t h  two-body 
i n t e r a c t i o n .  The prob lem o f  c o n s t r u c t i n g  the  q u a s i - e q u i l i b r i u m  d i s t r i b u t i o n  FN[F2(N)] can 
be so l ved  s e p a r a t e l y .  I t s  s o l u t i o n  e s t a b l i s h e s  a u n i v e r s a l  ( i ndependen t  o f  the  H a m i l t o n i a n )  
connec t i on  between the  s - p a r t i c l e  (s ~ 3) d i s t r i b u t i o n  f u n c t i o n s  and the  t w o - p a r t i c l e  
functions. 

Our argument shows that the result of the universal expression Fa[F 2 ] can indeed be 
used to close the equilibrium BBGKY hierarchy with two-body interaction and motivates 
the proposed approach. Different forms of the method of quasi-equilibrium ensembles are 
often used in statistical physics [6-8]. It was used in [9] to construct Zubarev's non- 
equilibrium statistical operator. 

On the basis of what we have said, we have the following extremal problem (in place 
of the entropy (3), we use the H function HN[F N] = --k~ZSN[FN]): 

I HN[FN]--+min for FN(x  1 . . . . .  xN) d x l . . . d x N ~ - l , .  

By N (5) 

N (N--  1) I F~ (xl . . . . . .  x~) dxa . . ,  dxN = F2(N)(x~,. x~). 

IBm-2 
Note that F 2 ( n ) i n  (5) is an arbitrary parameter. 

3. Expansion in the Neighborhood of an Uncorrelated State 

Solving the problem (5) by using Lagrangian multipliers, we find F~[F~(~)] in the 
form 
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"I'I 
F~[F2(~)] =a(~)r . . . . .  x~), ~)(N) ---- I IT(~)  (x~, x~), (6)  

i < j  

where  t h e  unknowns a(~), qD(N)(Xl, X~) a r e  d e t e r m i n e d  f rom t h e  sys t em of  e q u a t i o n s  

a(N) I (D(N) (xl ....... xN) dxl . . @ d x ~  ~ ~ ~ 

~ v  N ( 7 ) 

a(N)N ( N - -  t) I (I)(N) (xl . . . . . .  x•) dxa..,  dxN-~-- F2(x) (xl, x2). 
BNV -2 

In the absence of correlations, F~(~) has the form 

F~(N) (&, xj) =N- '  (N--t) F,(~) (&)F~(~.) (xj), ( 8 ) 

where F~(N)(x~) is the single-particle distribution function. In this case, the solution 
of the system (7) is readily found: 

~T N N(N--I)/2 (~(,~>(x,, x ~ ) = ~ ) ( & ( ~ > ( x , ) & ( ~ > ( x 3 )  '~(~-'), a(~;v ~(~, = 1. ( 9 )  

The c o r e s p o n d i n g  e x p r e s s i o n  f o r  F.~[F2(~,)] (6)  has  t h e  form 
N 

F~v (x, . . . . .  x~) = N -~ lle,, , (x,) (10) 

In the general case, we represent F2(N) identically in the form 

Fz(~) (xi, xj) = N  -~ (N-- t)  f u ~  ) (x,) Fum (x~) +](m (xi, xj). ( 11 ) 

It follows from the definition (2) that 

! I (12) 
B ~ BTr x 

for all N ->_ 2. 

We introduce the formal parameter ~ > 0 in front of ](N) in (ii) and seek the solution 
~(N>(x, y) in the form 

s q0(m(k) (x, y). ( 13 ) 
h~0 

Such a representation generates an expansion of the nonlinear integral operators (7) in 
Taylor series in the neighborhood of the point (8). The resulting series of linear 
inhomogeneous integral equations can be solved recursively [4]. 

We emphasize that E is a formal, but not small, expansion parameter. Variation of 
from zero to unity corresponds formally to the "switching on" of the two-body correlation. 
Therefore, only the value s = 1 has meaning. As will be seen from what follows, the 
expansion in powers of ~ is actually an expansion with respect to the number of pairs of 
correlating particles. The question of the convergence of the obtained formal series 
goes beyond the framework of this paper. We note that for finite N and V there are grounds 
for assuming that the expansion converges for all E since they are obtained by finding the 
extremum of the convex analytic functional H under linear constraints. Therefore, 
difficulties in the proof of the convergence may arise only in the thermodynamic limit. 
The device of "switching on the coupling" is often used. For example, the Born-Green 
equation is derived in [i0] by the method of formal "switching on of the two-body 
interaction." 

Substituting (13) in ~)(N) (6), we obtain 

- ~ r  ( I ) ~ )  ~N(fV-1)/2 U FI(N)(Xi) , (1)(N) ~ ~ ~(N), =~ ~(N) 

~ 0  i =  1 

N ( N - 1 )  

- - i s  ~ ,7(~) k ~ t ,  14) c(~) ~ ~(~) (x~, x~) I~ F~(~)(xs) + ,~(~), 
i<] s~i, j 
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of e. 

form 

l 
N(N-D 

2 ~ Ji ' N 
(~: ~ - - ~  i = 1  ~t ,(A) . ~ b ( i t  ) - " " " ZN ) = c(~v> V(N) (x~,, x,~,). "~'m> (x'h' x@, ]~ (FI(N) (xp)) q~ .. . . .  '~+~, 

(A,...,/ 'iq) j=t 

o < 7 ~ < k  
m ( /0  i ( where in place of the functions v(N) ~13) we have used the functions ~): 

~)(h). x~)=(f,(m(x~)F,(m(xj))(~-2>/(N-') (h)(x, xj). (15 )  (x) I,X~, q)(n) 

In ~(~') o(N)~(14) it is assumed that no pair of arguments (x~,x~) is encountered twice; the 

number qh ..... j, is equal to the number of times the variable Xp is e~countered among the 

arguments in the product ,,h(.h)~ " . "v(N),, . . . .  x~,)... @(~))(xmt, Xn~). In what follows, we shall assume that N 

is sufficiently large for all the encountered expressions to be well defined. 

Substituting (9)-(15) in (7) and equating the terms of the same order in ~, we obtain 
the required recursive system for ~h(~) In the first approximation, we have "v(N)" 

N 
(') " " ~ - ~ / ~ ) ( x ~ , x ~ ) .  (16) 

For k ->- 2 the recursive solution has the form (details of the calculations are given in 
[ 4 ] )  

(~) ~ (~) N-2 
~(~) (z,, x3 =-c(~, (N P(~, (x,, x~)- -~Z~-(F,(~ (x~)~((~, (xA+ 

(~) ' + - i  (~) 
F~(.~) (x~)R~N)(x~) ) N (N-i )F~(~)  (x~)F,(z+)(x~)T(~+)), ( 1 7 )  

where P(~), ~(~) 'v(') �9 ,(N), ~(N) are expressed in terms of ~) with n < k: 

P(~) (x~, 

"v ~-~ ~ '~  (18) 

I '~(~)" (:) ~v (") 
R(~ ) (x)-~- ,:-(N) ix, g) dy, T(~) ~ R(~v) (x) dx. 

BVt 

All the s-particle distribution functions can be represented as expansions in powers 

In particular, for Fa(~)(x~, xz, xa)--~ Z ~ F~(~)(~) (x~, xz, x~) the coefficients F(~()N) have the 
k~0 

where 

F (o) _ ( N - l )  (N-2)N-2F~(~)(x~)F,<N)(x~)F~(N)(x~), 3(N)-- 

FJ(~)----N -I (N-Z)  {Fl(m (x,) 1<~) (x~, x~) +f~(z~) (x~)/(m (x~, z~) + :F~(m (x3)/(m (x~, x2) }, 

T ( ~ '  F~)=N (N-I ) (N-2) {-N-3F,(~,) (x,)F,(~) (x~)l~,(~) (zD-(~)- 
(a 

N-'  (F,(x, (x,)P(~)) (x2, x3) +F,(,+) (x2)P(~) (x,, x3)+ 
(h) - 3  (h) F,(~) (z~)P(~+)(x. xO )+N (R(,,) (x~)F,(~)(x~)E,(~)(xD+ 

(h) (~) F __ i-. (a), R<~) (x2)Fi(m (x~)f,<~) (x3)+R(~+~ (x3) ,(z~) (x~)F,(~) (x~)) ~!V~m (.x,, x~, x3) }, k > 2 ,  

(19) 

(20) 

( 2 1 )  

Q~) @1, x2, x3)= a(N) .I ZI~) dx4.., dxN. ( 2 2 )  
B V ~ - 3  

The expressions (14)-(22) enable us to calculate f~) for any k. We emphasize the 

recursive nature of the procedure for determining the coefficients F~) : to find the k-th 

order, it is necessary to know the functions ~(~) for m = 0 k -- i. Because of the (N) ' " " " ' 
combinatorial complexity of the calculations, it is expedient to use a diagram technique. 

4. Rules for Constructing Diagrams 

We shall proceed from the expression for Z~ )) (xt ..... x~) (14). From (17), it can be seen 
~N(N--~) is taken that ~h(m)iare proportional to c(~). Further, we assume that in (16J-the factor ~(N) w (N) 
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in front of the summation sign and the products of ~ - "  (~') -~ ~ zunc~zons%(~) =~(~)~(N) are summed. With 

each term in %~k~) (16) we associate a diagram in accordance with the following rules. With 

the phase variables of particle i we associate a vertex with index i. The function 

X(~) (x~xj) is associated with a line of order m connecting the vertices i and j the order (N) , 

m being written next to the line. Any two vertices can be directly connected by not more 
than one line. With vertex i there is associated the function [F~(N)(x~)]-P+I,p~O is the 
number of lines that converge at vertex i. The diagram as a whole is associated with the 
product of functions corresponding to the vertices and lines shown in it. 

The graphical representation of a term in the sum z(') (16) is constructed as follows ~(N) 
On a plane we describe N open circles (vertices) and label them with numbers from 1 to N; 

we then connect the vertices whose phase variables are contained among the arguments of the 

functions %l~(x, xj) by lines of the corresponding orders. The typical term in C(x~N(~-~)~(N~(7~ 
has the form 

I f )  (4) (7~ 
0 0 0 ~ 0 0 .'' 0 

7 2 5 4 f i  f i 7  N 

To it there corresponds the analytic expression 

(2) t ~ (&) i 

We call the sum of the orders of the lines represented in a diagram the order of the 

diagram. To the expression Z!~). there corresponds the set of all possible diagrams of <IY ) 

order k for which all lines have order not higher than k -- i. 

In calculating the expressions (18) and (22), we integrate Z~'~) over a certain set of 

phase variables and then multiply the result by a(N). The integration of the expression Z (7') (N) 
with respect to the phase variables of particle i is represented by deletion of vertex i 

in all diagrams corresponding to Z!~).. 

The diagram expansion of the expressions ~) .~(~)(x~), T~ and v (N) tX~,Xj, Xh) is 

generated bv the diagram expansion for Z~ ), We shall say that the vertices in the diagram 
- t ~  ) "  

in Z (~) with respect to whose phase variables no integration is made are fixed and (N) 
represent them by open circles. All the remaining vertices -- the field vertices -- are 
represented by black circles. The free field vertices are not shown in the diagram. 

It is easy to show that the contribution from the diagram in ZI~ ) to the diagram 

expansion of the expressions (18) and (22) is equal to the integral over the phase 

variables of the field vertices of the product of the functions ~(~)(x~, x~) and the func- ~(N) 

tions [F~(~)(x~)] -~+~ corresponding to the fixed and connected field vertices, the integral 

being multiplied by N-q, where q is the number of fixed and connected field vertices in 
the diagram. 

Further the diagrams in the expansions ~(~)(x.x~), (~) ~(~) ' (~ , ~(~) ~<~)(x~), ~(~) a n d  Q~)(x~,x~,x~)  c a n  b e  

divided in the usual manner into topological equivalence classes. Diagrams that differ 
only in the labeling of the field vertices are assumed to be equivalent. Thus, in the 

example given above the same contribution to D(v) (x~, x~) xs made by the topologically ~ ( N )  
equivalentdiagrams 

(2) (~) (~) (2) (4) (7) 

7 2 ~ 5 ~ ' 1 6 $ 7 4 

and also all diagrams for which the fixed vertex 1 is connected to a field vertex by a 
line of second order; this field vertex is connected to the fixed vertex 3 by a line of 
fourth order, the two other field vertices are connected by lines of second order, while 
all the remaining field vertices are free. 

The contribution from a complete set of diagrams of class D is equal to the contribu- 
tion from any diagram of the class, multiplied by the number of diagrams M(D) in the 
class: 

M(D)=P(D)S(D),  P(D)=(N--r(D))![p(D)!(N-p(D)--r(D))!]  -~, 

9 8 1  



where p(D) and r(D) are, respectively, the numbers of field and fixed vertices, and S(D) 
is the number of ways in which one can label the field vertices with numbers from 1 to 
p(D) without deforming the lines and without changing their orders. A class of topologi- 
cally equivalent diagrams is represented by a single diagram with unlabeled field 
vertices. 

As a result, we arrive at a diagram expansion for the functions F~[~) (21). It is 

formed by diagram expansions: T~) with the addition of the fixed vertices i, 2, and 3, 

D(~) (x~, x~) with the addition ~(~)(x~I(N), , with the addition of the two missing fixed vertices, ~(N) 
of one missing fixed vertex, and, finally, the expansion of ~(~) (x~, ==, x~). ~(~) 

We note a particular feature of the proposed diagram technique due to the complicated 
recursive structure of the solution. In the graphical representation of the expansion 

for F (~) (21)i, it is convenient to assume that all lines are independent. However, in 3 ( N )  

accordance with (17) all lines of order k ~ 2 can be recursively expressed in terms of a 
line of first order. To the first-order line there corresponds the analytic expression 
(16), which is proportional to the binary correlation function /(~)(x~, x~), and it is the 
only "parameter of the theory." Therefore, when the diagrams are associated with analytic 
expressions and the reduction is made to the form containing only the binary correlation 
functions /(;)(x~, x~), it is found that some of them are proportional to each other. For 
example, the line of order 2 

is represented graphically in the form 

(2) 
0 ~0 = ~ 

(2) 
G~ O 

(7) (~) U) U) 

Therefore, in the calculation of the coefficient F3(N)(2) proportional contributions are made, 
in particular, by diagrams of the form 

U) (1) 
o 0 $ o 

/7(2)  (Xi, in the expansion of V(N)~ X~, X3) and diagrams of the form 

(7) (i) 

(2) x. in  t h e  e x p a n s i o n  of  P(N)( ', x~). A s i m i l a r  remark a l s o  a p p l i e s  t o  t h e  t o p o l o g i c a l l y  i n e q u i v a -  

T(h) and f)(~)(x~,xj, x~). This  c i r c u m s t a n c e  l e n t  d i ag rams  in  t h e  e x p a n s i o n s  o f  p(l,.)Ix, xj) R~))(x~),-<~) ( N )  t ' ,  , ~ ( N )  

l e a d s  t o  a change  in  t h e  n u m e r i c a l  f a c t o r s  m u l t i p l y i n g  t h e  a n a l y t i c  e x p r e s s i o n s  c o r r e s p o n -  
d ing  to  t h e  d i a g r a m s .  

5. Kirkwood Approximation. Long-Range Correlations 

We give the results of calculation of the lowest orders of the F~[F2] expansion. 
Restricting ourselves to the zeroth and first approximations (19) and (20), and setting 
e = i, i.e., going over to the "completely switched-on binary correlation," we obtain in 
the thermodynamic limit 

F3=-2Fi (xi)Fi (2J Fi (x~) + Fi (x~)F2 (x2, x~) +F~ (x2)F~ (xi, x3) + F~ (x3)F2 (x~, x2), ( 2 3 ) 

which c o r r e s p o n d s  t o  t h e  Cheng a p p r o x i m a t i o n  ( q u o t e d  from [ 1 1 ] ) .  In  t h e  n e x t  o r d e r ,  non- 
vanishing contributions to F~ (2) are made by diagrams of the type 

17) (7) (7) (7) 
O O" O ~ O O ~ O �9 

The corresponding analytic expression for F3 TM has the form 

l (x,, x~) / (x~, x~) F,-' (x~) +1 (x~, x~) ] (x~, x~) F,-' (x~) +l (zi, x~) • 

/ (x2, x~) F~ -~ (x3) -- lim (nV) -~ {F, (xi) 6(N) (x2, xs) +IF~ (x2) 6(N) (x~, xa) +F~ (x~) G(N) (x~, x J  }, ( 24 ) 

where we have  used  t h e  n o t a t i o n  

G(~) (x~, x j) ----- i /(N) (x~,,~ x)/(~) (z j, z) F;~N) (x) dx. (25)  
BV* 
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The term in (24) containing the expression (25) makes a nonvanishing contribution only 
in the case of long-range correlations. Going over to the Fourier transforms, we can, for 
sufficiently large N and V, represent the product of correlation functions in (24) and 
(25) at the equilibrium point in the form 

]w) (x,, x)](~v) (z~, x) =n~,:p (p) ~ (p,)cp (p~) ~ a ~  (ri, r~, k)e ~k~ d~k, 
R~ 

where  k i s  t h e  wave v e c t o r ,  n i s  t h e  e q u i l i b r i u m  d e n s i t y ,  and '  T(p) i s  t h e  Maxwell d i s t r i b u -  
t i o n  f u n c t i o n  a t  u n i t  d e n s i t y .  Then t h e  c o n t r i b u t i o n  f rom (25)  to  (24)  has  t h e  form 

lira I F~ (xi) G(~) (xi, x~) =n3T (p~) ~ (pj) T (Pz) lim V-'o(~) (r~, r~, 0) 
v~= TrY v~oo 

and is nonvanishing only when the spectrum of correlations has a singularity at k=0. In 
the third order, we have 

F(a) =- ! (x~, x~) / (x~, x~) / (x.  x~) (F~ (x~) F~ (x~) F~ (x~))-~ + 

lira i ](lv)(Xl, X)/(N)(X2, X)[(.~)(X~, x)FT~N)(x)dx-- 
BV~ 

v ~  t n V (G(~) (xz, x~) F-~(x~) F~(xe)+G(~v) (xe, x~) F-[X(x~) F[~(xs)~ - 

G(N) (x~, x~) F-~ ~ (x~) F7 ~ (x~)) (Fz (xO ] (x,, x~) + F~ (x~) ] (x~, x~) + 

F~ (x~) ] (x~, x~)) § (nV)-~F~ (x~) F~ (x~) F a (x~) ]Or) - -  2 (nV) -~ • 

(F~ (x~) A(~v) (x~, xa) + F~ (x~) A(N) (xa,, xs) ~- F~ (x~)A(N) (x~,. x~)) -- 

(nV) -~ (Fa (x~) F~ (xz) C(~) (xa) -+- F~ (xa) F~ (xs) C(N) (x~) +. F~ (x~) F~ (xs) C(N) (x~)) t , (26)  ) 

where we have used the notation 

(zg), 

I(N) = I ](N) (x, g) ](N) (g, z)/(N) (x, z) dx dg dz, 
. v  ~ FI(N) (x) FI(N)(g) FI(N) (z) 

A(zc)(x, y) = I /(N)(x, z)G(~c)(g, z) F-~N)(z)dz, C(N~ (x )= A ~) (x, x) 
"v" Fwv ) (x) 

In the absence of long-range correlations, allowance for the first four coefficients 
(20), (22), and 26) gives the following expression for Fa[F2]: 

f3 = F2 (Xl, x2) F2 (x2, x3) F2 (Xl, x3) F ;  ] (Xl) if;1 (x2) F~l (x3) + 

I /(~) (x. x)/(N)(x2, x)/(=)(x~, lira x) F~i~u (x)~x. (27) 
BV~ 

The first term in the expression (27) corresponds to the Kirkwood approximation. The 
second term gives the first correction to the Kirkwood approximation in the power of the 
density n (see the following section). 

6. One-Irreducible Diagrams 

As noted above, contributions from certain topologically inequivalent diagrams to (21) 
can compensate each other, leading to the appearance of averaging factors of the type 
(nV) -s in front of the integrals of the products of correlation functions. In the absence 
of long-range correlations, these contributions vanish in the thermodynamic limit. In 
this section, we shall give a condition on diagrams that is sufficient for their contri- 
bution to be nonvanishing in the thermodynamic limit. 

Below, we consider the case when the dependences on the coordinates and momenta in F s 
separate. Then in the thermodynamic limit, 

Fi(x)=n~(p) ,  F2(x. x~)=n~nz(r~, 5)~(P~)~(Pr 

/(x~, x~)=n2h(r~, r n~(r~, r247  r~), (28)  
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F3(x. xj, xh)=n~n3(r,, ~, rh)~(p~)r (p~), 

where ~ ( p ) i i s  t h e  Maxwell d i s t r i b u t i o n  f u n c t i o n  f o r  u n i t  d e n s i t y ,  and n i s  t h e  c o n s t a n t  
d e n s i t y .  

I n  each  o r d e r  k ~ 2, some o f  t h e  d i a g r a m s  can be o b t a i n e d  f rom d i a g r a m s  in  which  a l l  
l i n e s  have  f i r s t  o r d e r  by r e p l a c i n g  some o f  t h e  l i n e s  and f i e l d  v e r t i c e s  by l i n e s  o f  
h i g h e r  o r d e r .  We s h a l l  s ay  t h a t  d i a g r a m s  w i t h  l i n e s  o f  o n l y  f i r s t  o r d e r  in  which such  
c a n c e l i n g  i s  i m p o s s i b l e  a r e  o n e - i r r e d u c i b l e  d i a g r a m s .  I t  i s  o b v i o u s  t h a t  none o f  t h e  
c l a s s e s  o f  d i a g r a m s  can make a c o n t r i b u t i o n  o f  t h e  same t y p e  as  t h e  o n e - i r r e d u c i b l e  
diagrams. The contribution of the one-irreducible diagrams to F~I~) (21) is provided only 

by the functional ~(x)~,,n (~)I~ x~, x~) (22). 

It is convenient to classify the one-irreducible diagrams in accordance with the 
number of field vertices. For nonvanishing number of field vertices, the one-irreducible 
diagrams in the expansion (22) are constructed as follows. All the field vertices are 
connected with each of three fixed first-order lines. Then, adding in each case one line 
of first order this diagram is transformed into the complete graph. The diagrams obtained 
during the course of the construction give all (up to the labeling of the fixed vertices) 
one-irreducible diagrams with the given number of field vertices. 

The one-irreducible diagram with q field vertices and minimal number of lines makes 
the following contribution to n~(r~, r~, r3): 

nq I f l  h(rl'r(~))h(r~'r(O)h(ra' r(~))d3r(~)'" "d~r(q)" 
R 3 q i ~ l  

This expression is proportional to the q-th power of the density. It is readily verified 
that the addition of a first-order line for constant number of field vertices does not 
change this proportionality. 

The one-irreducible diagrams without field vertices 

O O O , OO O ~ O O O , V (29)  

give the Kirkwood approximation for n3(rl, ri, rz) (28): 

n3(r,, r~, r3)=n~(rl, r.~)n~(r~, r~)n~(r~, r~). 

In (29) and what follows, all the lines are of first order. 

It is easy to show that the division of the one-irreducible diagrams into classes 
in accordance with the number of field vertices leads to the approximation of n3(r~, ri, ra) 
in the form of a series in powers of the density of the form 

i ~ 1  

The c l a s s  o f  o n e - i r r e d u c i b l e  d iag rams w i t h  one f i e l d  v e r t e x  

Y Y , Y Y  (30) 

gives ql and corresponds to the Henderson approximation [12]: 

qi(r~, ri, r3)= !h(r~,r)h(r~,r)h(r~,r) dar. 
R* 

F i n a l l y ,  we g i v e  t h e  e x p r e s s i o n  f o r  q2: 

q~(r~,r~,rO--q/(r,,r.,rO+ ~ ~ h(r~,r)h(r~,r)h(r~,r):ih(r,r')h(r~,r')h(r.,r')d ~rd~r'. 
R~ /Is 
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It remains an open question whether there are further classes of diagrams that are 
different from the one-irreducible diagrams and make a contribution that does not vanish 
in the thermodynamic limit in the absence of long-range correlations in n 3. We note, 
however, that analysis of all diagrams in the expansion (21) to the sixth order in 
inclusively shows that only the one-irreducible diagrams make the required contribution. 

Thus, the expansion (21) establishes a universal connection between the three-particle 
distribution function and the two-particle function. The question of the convergence of 
the expansion (21) in the thermodynamic limit requires a separate investigation. 

The proposed method of construction of a universal quasi-equilibrium ensemble admits 
generalization to the case of an arbitrary s-particle interaction -- instead of the 
second restriction in the problem (5) one must specify the s-particle distribution 
function. Extension to quantum and lattice models is also possible. 
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