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We introduce a method for improving the Chapman-
Enskog expansion (CE) free of recipe assumptions.
Obstacles of the CE method are well known, for example,
a short-wave instability of the Burnett approximation
[1}. Many attempts were made to improve the CE
expansion. In particular, we used the idea of partial
summing (2, 3]. However, all these attempts have an ad
hoc character. Hence, it is important to develop a more
fundamental method of improving the CE expansion.

The famous KAM theory (4-6] might serve for a
pattern. One can consider it as an improved perturbation
theory. There one applies rapidly converging Newton
method instead of Taylor expansion, and one searches for
a dynamic invariant manifold rather than for a solution.

Here we suggest a method of constructing dynamic
invariant manifolds for the Boltzmann (B) equation. Same
as in KAM, we will use the Newton method. Each iteration
will be concordant with the #-theorenm

our method consists of two main parts
1. A constructing of a specific thermodynamic parameter-
ization for an arbitrary manifold which gives dynamic
equations on this manifold (this part lacks in the KaM
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theory, and it is caused by the request on concordance
of every approximation with the #-theorem)
2. A correction of the dynamic noninvariance of a
manifold by the Newton method. '

we will describe the method for a general dynamic
system with a global convex #-function. The manifold
{f(a)} consists of distributions f(a), where a are
coordinates on the manifold. The request 1 means that
one should define operators #(f) for {f(a)} so that:

dH(M(a))/dt:(VM(a)

H(M(a))=H[f(#H(a))], dM(f(M(a)))/dt=VfM'J(f) (1)
f=f(a)

Here J(f) 1is a dissipative vector field (the collision

H(M(a)), dM(F(M(a)))/dt)<o;

integral for the B equation), p'g is a scalar product
(with integration over velocities for the B equation)
(.,.) is a scalar product for macroscopic parameters

The only suitable parameterization is obtained via
the functionals (the only restriction: {f(a)} 1is not
tangent to a level of the ¥-function for any f(a))
Mo ay(D)R(F(@)) L, W(f(a))=VpHI[[] ftia (2)
Here [(f)y=1lnf for the B equation. Thermodynamic
parameterization for {f(a)} is obtained by functionals
M;(a)(f) and by adding any other functionals suitable
for the dimension of {f(a)}. If the manifold consists of
quasi-equilibrium distributions then one does not need a
search for new functionals M;(a)(f).

The condition of dynamic invariance 1is easily
formalized for the manifold {(f(#(a))}

B(E(H)Y=(V, L (H), OM(F(M))10t)-Of |5t =0 (3)
F=f (M)
Here Of/8t is -v(Of/8x)+J(f) for the B equation, and
6M(f(M))/5t=(VfM-6f/6t) . One can solve (3) by the
F=F(H#)

Newton iterative procedure.
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The method is an iterative algorithm: 1) choose an
initial manifold and define dynamics on it using the
functionals (2); 2) linearize (3) near the initial
manifold and obtain the first correction; 3) define
dynamics on the manifold obtained using corresponding
new functionals (2), etc.

Let the initial manifold consists of local Maxwell
distributions fo. Equation for the first correction is:

L[fo,6f1]+K[f0,6f11=A(f0)sf0{(sz/Tm)1/23(c2—§)§§ + o
X
> 1 » 83 iz4 of y  ,80f . ,oOf
+2(cc~30 . %y } K(If,,Of 1= 3 —f¢.v d’v-v
311 oy 1 iso ew; P e ax

Here L[f0’6[1] is the linearized collision integral, 4)1-
are collision invariants. For a small deviation from
equilibrium, equation (4) yields the following tension
tensor O and the heat flux ¢ (one-dimensional case, T
and v are dimensionless deviations [2]):

G=—%HOT0R{2(6u/6x)—3(62T/6x2)}; R=(1-(2/5)8%/8x%)~

g=-(5/ T3/ n R (3(8T/8x)-(8/5)(8%u/0x)) (5)
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