Pharmacophore-Based Techniques For the Construction of Biochemical Reaction Networks

Michael Binns and Constantinos Theodoropoulos

School of Chemical Engineering and Analytical Science
University of Manchester, Manchester, M60 1QD, UK
Objectives

Using Automated methods to construct reaction networks, searching for new reactions.

Generating new pathways through large reaction networks

Obtaining kinetic expressions and fitting parameters using reduced models
Applications

• Improving Drug Design Options
• Control Flux Analysis
• Improving Yields in Bioreactors
• Designing New Processes
• Determine the effect of New drugs
• Explore Genetic Modification and Diseases
• Adding New Capabilities to a Process
Metabolic Network Development: Main Ideas

- Initially assume that all enzymes are known
- Treat enzymes as black boxes
- Compare ligands which bind to the same sites
- Use this information to predict
  - new binding species
  - new reactions

1. Identify known enzymes in system
2. Select enzyme
3. Extract known reactions Match Binding Species to binding sites
4. Calculate 2D pharmacophores for each binding site
5. Search for new binding species using the pharmacophores
6. Reduce complexity using 3D pharmacophore screening
7. Generate Reactions
8. Construct pathways using the reactions generated for all the enzymes
9. Model reduction based kinetic model construction
10. Select Next Enzyme
Matching Binding Species to Binding Sites

An example enzyme catalyses the following reactions

1) \( A + B \Leftrightarrow C + D \)
2) \( E + F \Leftrightarrow G + H \)

A comparison (Using Simcomp\(^1\)) of the species in reaction 1 with those in reaction 2 should reveal which species bind to which sites.

1) \( A + B \Leftrightarrow C + D \)  
2) \( E + F \Leftrightarrow G + H \)

Assuming that species which bind to the same site are similar

Computation of 2D Pharmacophores

Similarity checking and subgraph searching both use graph theoretical methods\(^1\) where

- functional groups = nodes
- bonds = edges.

Graph Theory

We have used the graph theory comparison methods in the program simcomp\(^1\) to compute similarity.

Pharmacophores are computed by finding the maximal common subgraphs between binding species.

Searching for binding species is possible using a subgraph isomorphism algorithm which searches for 1 graph inside another

Example using the enzyme 1.1.1.27

This enzyme catalyses 3 known reactions

R00703: $\text{C00186} + \text{C00003} \rightleftharpoons \text{C00022} + \text{C00004} + \text{C00080}$

R01000: $\text{C05984} + \text{C00003} \rightleftharpoons \text{C00109} + \text{C00004} + \text{C00080}$

R03104: $\text{C05823} + \text{C00003} \rightleftharpoons \text{C00958} + \text{C00004}$

In this case only two pairs of species need to be compared.

All Calculations were performed using raw data from the KEGG: Ligand databases\(^2\) which contain biochemical reactions and the 2D structure of the compounds involved

Comparing the reactants and products

Reactants

Products

Comparison

Pharmacophore with 2 free bonds

Pharmacophore with 1 free bond

(C00109)

(C00022)
Searching for binding species containing the
2D pharmacophores

Reactants

Pharmacophore with 2 free bonds

118 possible binding species

Products

Pharmacophore with 1 free bond

139 possible binding species

(C00149) (C04039) (C00141) (C01244) (C00817) (C00679)
Computing 3D Structures

• Using an optimization algorithm together with an expert system

• The approximate bond lengths are found from the covalent radii of the atoms
  • With the 1st atom being placed at coordinates (0,0,0)

• All subsequent atom positions are found through the bond angles of each bond
  • Initially these bond angles are randomly generated

• The bond angles are then optimized using the following objective function
  • The 1st part of this function ensures that the correct bond lengths are maintained
  • The 2nd part maximises the distance between non-bonded pairs to avoid overlap

\[
\min \sum_{bonded} (d_{i,j} - d_{i,j}^{ex})^2 + \sum_{non-bonded} e^{2 \times \frac{d_{i,j}^{ex}}{d_{i,j}}} \\
\]

\(d_{i,j}^{ex}\) Expected distances between atoms if they were bonded

\(d_{i,j}\) Actual distances between the atoms
Structure Optimization and Charge

Approximate 3D structures can be optimized and charges can be calculated using the quantum chemical software Gaussian. Here we have used the semi-empirical method AM1 with basis set STO-3G.

3D Pharmacophore Generation

One 2D Structure

Many 3D conformations

3D structures obtained using Gaussian³
Flexible 3D Bounds: A Model Reduction Step

Molecules can bend and twist

Giving a range of distances between each atom-atom pair

- e.g. Oxygen-Oxygen distance = 1.5 – 4 angstroms

A method called Bound Smoothing\(^4\) can be used to obtain these distance ranges

Matching flexible structures have overlapping atom-atom distances.

Comparing of 2 molecules gives a smaller bound in the pharmacophore.

New Binding species must be able to squeeze in this gap.
3D Molecule Checks: Computational Requirements

A 3D graph-theoretical method is used based on atom-atom distance specification

A typical molecule

- 30 atoms
- 30 bonds
- 435 atom-atom distances

Where a 2D method would use 30 bonds, the 3D method uses 435 atom-atom distances

Hence the 3D method is much more expensive
Example: 3D Pharmacophore

A 3D graph theoretical method\(^4\) is used to eliminate 2D binding species.

Reaction Generation

For each enzyme generate combinations of binding species

Binding Sites

\[ A + B \rightleftharpoons C + D \]

Computed Binding species

- \( A_1 \)
- \( A_2 \)
- \( B_1 \)
- \( B_2 \)
- \( B_3 \)
- \( C_1 \)
- \( C_2 \)
- \( C_3 \)
- \( C_4 \)
- \( D_1 \)
- \( D_2 \)

Combinations of binding species which can form reactions

- Contain no more than 1 species from each binding site on each side of the reaction
- Do not involve stoichiometries greater than that of the known reactions

For example, \( A_1 + A_2 \rightarrow \) products would not be allowed

For example, \( A_1 + B_1 + C_1 \rightarrow A_2 + D_2 \) would not be allowed in this case
Reaction Feasibility

New reactions are tested for feasibility in the following ways

New reaction

↓

Use linear Programming\(^5\) to Check the reaction conserves the number of C, H, O etc. atoms

Fail

Discard Reaction

Pass

Add reaction to the set of feasible reactions

↓

Check reaction is not a linear combination of the existing feasible reactions

Fail

Discard Reaction

Pass

Keep New reaction

Example: Reaction Generation for Enzyme 1.1.1.27

Reaction generation yields 241 linearly independent reactions

Including Chirality changing Reactions

And many other new reaction involving the new binding species
Pathway Construction

Allows us to answer the following questions:

Can a Reaction network convert a set of raw materials into desired products?

Are there any alternative pathways converting A into B?

Which reactions are important for converting A into B?

Pathway construction is a complex problem for large numbers of reactions

Pathway construction using P-graphs based method

Pathway generation is possible using an efficient implementation of p-graphs.\(^7\)

Generates pathways according to a set of rules or axioms

e.g. Specified Products must be produced

Using combinatorial algorithms to generate pathways

Based on branch-and-bound methods

subject to a set of rules and constraints

• Currently limited to fixed overall reactions
• Eliminates cyclic and dependent pathways
• Low memory requirements

---

Human Red Blood Cell: Glycolysis

We have applied our procedure on 24 enzymes involved in the glycolysis and pentose phosphate pathways.
Calculating Pharmacophores

Our procedure calculates pharmacophores for the 24 enzymes (107 overall)

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Stoichiometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.27</td>
<td>2 → 3 and 2 → 2</td>
</tr>
<tr>
<td>1.1.1.44</td>
<td>2 → 4</td>
</tr>
<tr>
<td>1.1.1.49</td>
<td>2 → 3</td>
</tr>
<tr>
<td>1.2.1.12</td>
<td>3 → 3 and 3 → 3</td>
</tr>
<tr>
<td>2.2.1.1</td>
<td>2 → 2</td>
</tr>
<tr>
<td>2.2.1.2</td>
<td>2 → 2</td>
</tr>
<tr>
<td>2.7.1.1</td>
<td>2 → 2</td>
</tr>
<tr>
<td>2.7.1.11</td>
<td>2 → 2</td>
</tr>
<tr>
<td>2.7.1.2</td>
<td>2 → 2</td>
</tr>
<tr>
<td>2.7.1.40</td>
<td>2 → 2</td>
</tr>
<tr>
<td>2.7.2.3</td>
<td>2 → 2</td>
</tr>
<tr>
<td>2.7.6.1</td>
<td>2 → 2</td>
</tr>
<tr>
<td>3.1.1.31</td>
<td>2 → 1</td>
</tr>
<tr>
<td>3.1.3.11</td>
<td>2 → 2</td>
</tr>
<tr>
<td>3.1.3.13</td>
<td>2 → 2</td>
</tr>
<tr>
<td>3.6.1.5</td>
<td>3 → 3 and 2 → 2</td>
</tr>
<tr>
<td>4.1.2.13</td>
<td>1 → 2</td>
</tr>
<tr>
<td>4.2.1.11</td>
<td>1 → 2</td>
</tr>
<tr>
<td>5.1.3.1</td>
<td>1 → 1</td>
</tr>
<tr>
<td>5.3.1.1</td>
<td>1 → 1</td>
</tr>
<tr>
<td>5.3.1.6</td>
<td>1 → 1</td>
</tr>
<tr>
<td>5.3.1.9</td>
<td>1 → 1</td>
</tr>
<tr>
<td>5.4.2.1</td>
<td>1 → 1</td>
</tr>
<tr>
<td>5.4.2.4</td>
<td>2 → 2 and 1 → 1</td>
</tr>
</tbody>
</table>

Enzyme 5.3.1.9
## Binding Species and Reactions

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Binding Species</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Known</td>
<td>Calculated</td>
</tr>
<tr>
<td>1.1.1.27</td>
<td>9</td>
<td>254</td>
</tr>
<tr>
<td>1.1.1.44</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>1.1.1.49</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>1.2.1.12</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>2.2.1.1</td>
<td>9</td>
<td>237</td>
</tr>
<tr>
<td>2.2.1.2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>2.7.1.1</td>
<td>24</td>
<td>825</td>
</tr>
<tr>
<td>2.7.1.11</td>
<td>16</td>
<td>56</td>
</tr>
<tr>
<td>2.7.1.2</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>2.7.1.40</td>
<td>18</td>
<td>46</td>
</tr>
<tr>
<td>2.7.2.3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2.7.6.1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3.1.1.31</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.1.3.11</td>
<td>8</td>
<td>49</td>
</tr>
<tr>
<td>3.1.3.13</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>3.6.1.5</td>
<td>20</td>
<td>312</td>
</tr>
<tr>
<td>4.1.2.13</td>
<td>10</td>
<td>434</td>
</tr>
<tr>
<td>4.2.1.11</td>
<td>7</td>
<td>2422</td>
</tr>
<tr>
<td>5.1.3.1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5.3.1.1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5.3.1.6</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5.3.1.9</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>5.4.2.1</td>
<td>4</td>
<td>76</td>
</tr>
<tr>
<td>5.4.2.4</td>
<td>7</td>
<td>82</td>
</tr>
</tbody>
</table>
Glycolysis: Pathway Construction

Generating new reactions and computing pathways leads to some new routes through the system.

1. Identify known enzymes in system
2. Select enzyme
3. For known reactions Match Binding Species to binding sites
4. Calculate 2D pharmacophores for each binding site
5. Search for new binding species using the pharmacophores
6. Reduce complexity using 3D pharmacophore screening
7. Generate Reactions
8. Construct pathways using the reactions generated for all the enzymes
9. Model reduction based kinetic model construction

Select enzyme
Select Next Enzyme
Low Dimensional Manifolds

\[ \frac{dc}{dt} = F(c) \]  
System of ODEs

\[ Q^T J Q = \begin{pmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{pmatrix} \]  
Decoupling fast and slow timescales

\[ S_{11}Z - ZS_{22} = -S_{12} \]

\[ T = Q \left( I + \begin{pmatrix} 0 & Z \\ 0 & 0 \end{pmatrix} \right) \quad T^{-1} J T = \begin{pmatrix} S_{11} & 0 \\ 0 & S_{22} \end{pmatrix} \]

Projection onto fast/slow subspace

\[ \begin{pmatrix} g_{\text{slow}} \\ g_{\text{fast}} \end{pmatrix} = T^{-1} F(T \cdot) \quad \begin{pmatrix} x_{\text{slow}} \\ x_{\text{fast}} \end{pmatrix} = T^{-1} c \]

QSSA for fast species

\[ \frac{dx_{\text{slow}}}{dt} = g_{\text{slow}}(x_{\text{slow}},x_{\text{fast}}) \]

\[ \frac{dx_{\text{fast}}}{dt} = 0 \]

Human Red Blood Cell

A biochemical system representing the function of a red blood cell

- 49 Species
  - 5 extracellular species
  - 44 intracellular species

- 41 Reactions

A simple system

- No Nucleus
- Involves mostly Glycolysis

Example: Human Red Blood Cell

Applying the LDM procedure

- 44 ODEs and 5 algebraic equations: $0.00074$
- 40 ODEs and 9 algebraic equations: $0.00528$
- 37 ODEs and 12 algebraic equations: $0.0441$

For this system a large number of ODEs are required
Comparison with Full Model

37 ODEs and 12 algebraic equations

Comparison with the full kinetic model showed an almost exact match for 0.1 hours.
Species contributing to the Slow Dynamics

By analysing the projection matrix the species contributing to the fast or slow dynamics can be assessed\(^8\)

\[
x_{\text{slow}} = T_r^{-1} c
\]

\[
p_i^{\text{slow}} = \sum_{j=1}^{r} t_{j,i} t_j \quad \quad p_i^{\text{fast}} = \sum_{j=r+1}^{n} t_{j,i} t_j
\]

\[
d_i^{\text{slow}} = \left| e_i - p_i^{\text{slow}} \right| \quad \quad d_i^{\text{fast}} = \left| e_i - p_i^{\text{fast}} \right|
\]

\[
r_i^{\text{slow}} = \frac{d_i^{\text{fast}} \arccos d_i^{\text{slow}}}{d_i^{\text{fast}} \arccos d_i^{\text{slow}} + d_i^{\text{slow}} \arccos d_i^{\text{fast}}}
\]

\[
r_i^{\text{fast}} = \frac{d_i^{\text{slow}} \arccos d_i^{\text{fast}}}{d_i^{\text{slow}} \arccos d_i^{\text{fast}} + d_i^{\text{fast}} \arccos d_i^{\text{slow}}}
\]

Species contributing to the Slow Dynamics

Analysis of $r_i^{\text{fast}}$ and $r_i^{\text{slow}}$

For the system with 37 slow modes and 12 fast modes shows

7 species are most associated with the fast dynamics

- GL6P, GA3P, 1,3DPG, 2PG, PYR, INO and R1P

31 species are most associated with the slow dynamics

- e.g. ATP, Glc, 2,3DPG, FDP, NADP, GSSG, LAC, etc.

And the remaining 11 species are in-between

Parameter Estimation

Generated Biochemical Reaction Network

Initial estimate of parameters

Compute Manifold

Eliminate fast Species/reactions

Reduced optimisation to fit parameters

Converged

Not Converged

Experimental data

Kinetic model
Conclusions

We have developed a complete procedure to construct a wide range of metabolic networks with minimal knowledge of the system

The Procedure:

• Finds New Binding Species
• Calculates New reactions
• Generates New pathways

We have eliminated redundant data at each step to reduce the complexity

Finding kinetic expressions and fitting parameters for large reaction networks
Should be possible if a sufficiently reduced model can be found
• Using a Low Dimensional Manifold method
• Identifying and eliminating species which do not contribute to the slow dynamics
Acknowledgements

The financial support of the EU programme AITEKIN C00P-CT-2003-506667 is gratefully acknowledged.