Dissipation and Invariance in Process Networks
B. Erik Ydstie
Carnegie Mellon

Mohit Aggarwal, Yuan Xu, Michael Wartman

Aim: Understand the idea of invariance in passive control systems
Passivity Based Control

Control system:

\[
\frac{dx}{dt} = f(x) + g(x, u)
\]

control system

\[
y = h(x)
\]

observations

Example: MD with thermostat

\[
\dot{r}_i = v_i + \chi r_i
\]

strain

\[
\dot{v}_i = \frac{F(r_i)}{m_i} + \chi v_i - \alpha v_i
\]

friction

\[
\dot{V} = 3V \chi
\]
Definitions:

\[u \xrightarrow{S} y \]

Storage Function: \(V : x \rightarrow \mathbb{R}^{+/0} \)

\[
\frac{dV}{dt} \leq u^T y - \beta \|\zeta\|_2^2, \text{ passive (dissipative) if } \beta \geq 0
\]

\(\beta > 0 \)

- Input strictly passive if \(\zeta \rightarrow u \)
- Output strictly passive if \(\zeta \rightarrow y \)
- State strictly passive if \(\zeta \rightarrow x \)

\[
\frac{dV}{dt} = u^T y, \quad \text{Lossless (Hamiltonian, } V \text{ is "Invariant"})
\]
Passivity Theorem (Input-Output Theory)

A Feedback connection of a passive/lossless system \(S \) and a strictly input passive control system \(C \) is finite gain stable.

\[
u = g_0 e, \quad \text{strictly input passive if } g_0 > 0
\]
Proof

\[\frac{dV}{dt} \leq (u + n_2)y - \beta \zeta^2, \quad \text{control system} \]

\[\frac{dW}{dt} \leq (-y + n_1)u - g_0 e^2 \quad \text{controller} \]

\[\frac{d(V + W)}{dt} \leq \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}^T \begin{pmatrix} y \\ u \end{pmatrix} - g_0 e^2 - \beta \zeta^2, \quad \text{closed loop system is passive} \]
Passivity via Classical Thermodynamics

Classical System: Macro State $Z(x) = (U, V, N_1, ..., N_{nc}, A, Q_e, ..)$

\[
Z_1 + Z_2 = Z_3
\]

$U(Z_3) = U(Z_1) + U(Z_2)$, First Law

$S(Z_3) \geq S(Z_1) + S(Z_2)$, Second Law

Assumption: There exists an entropy function $S(Z)$ which is C^1, concave and homogeneous degree one.

\[
S(Z) = k_B \ln \Omega(U, V, N)
\]

\[
\ln(\Omega_1 + \Omega_2) = \ln(\Omega_1) + \ln(\Omega_2)
\]

\[
\Omega(U, V, N) = \frac{\mathcal{E}}{\hbar^{3N}} \int \delta(U - H(p^{3N}, q^{3N})) dp^{3N} dq^{3N}
\]
\[A = w_1^T Z - S(Z) \geq 0 \]

\[w_1 = \frac{\partial S}{\partial Z} \bigg|_{Z=Z_1} \]

\[Z = (U, V, M_1, ..., M_M) \]

\[w = (1, -P, -\mu_1, ..., -\mu_{nc}, \sigma, V, ...) \beta, \quad \beta = T^{-1} \]

Gibbs: \(Z_1 \) and \(Z_2 \) in equilibrium iff \(A = 0 \iff w_1 = w_2 \)
Passivity of Classical Non-Equilibrium Systems

\[\frac{dZ}{dt} = -L(w_1 - w) + u, \quad L > 0 \]

Very large reservoir \(Z_1 \)

\[\frac{dA}{dt} = (w_1 - w)^T \frac{dZ}{dt} \]

\[= -(w_1 - w)^T L(w_1 - w) + (w_1 - w)^T (u - u_1) \]

\[\text{dissipation} \quad \text{control} \]

\[u = u_1 - K(w_1 - w), \quad K > 0 \]
Process Networks

Graph: $G = (P, F)$

Each node is a process system (Conservation laws hold)
\[
\frac{dZ_i}{dt} = \sum_{i=1}^{n_i} f_{ij} + p_i \quad \text{“Kirchoff Current Law”}
\]

\[
\sum_{i=1}^{n_f} X_i = 0, \quad X_i = w_i - w_j \quad \text{“Kirchoff Voltage Law”}
\]

“Tellegen Theorem” (power balance)

\[
0 = \sum_{\text{ports}} \tilde{f}_j^T \tilde{w}_i - \sum_{\text{storage}} \tilde{w}^T \frac{d\tilde{Z}}{dt} - \sum_{\text{internal flows}} \tilde{X}_i^T \tilde{f}_i - \sum_{\text{source/sink}} \tilde{p}_k^T \tilde{w}_k
\]

Duality pairing, vector spaces \(P=(f,p,dZ/dt)\) and \(D=(X,w,w)\) are orthogonal
\[A = (w_1 - w)^T (Z_1 - Z) \geq 0, \quad \frac{dA}{dt} = \tilde{w}^T \frac{d\tilde{Z}}{dt} \]

Classical Irrev Thermo \(\tilde{p}_k^T \tilde{w}_k \geq 0, f = LX, L > 0 \)

\[
\frac{dA}{dt} = \sum \tilde{f}_j^T \tilde{w}_i - \sum \tilde{X}_i^T L_i \tilde{X}_i - \sum \tilde{p}_k^T \tilde{w}_k
\]

Theorem: Classical non-equilibrium systems (Linear laws) are passive.

Stable stationary states exist (Prigogine) when boundary conditions are fixed.
Generalization of CIT

Entropy: \(S = w^T Z \geq 0 \)

\[
\frac{dS}{dt} = \sum_{\text{ports}} f_j^T w_i - \sum_{\text{flows}} X_i^T f - \sum_{\text{source/sink}} p_k^T w_k
\]

Assumption: Suppose entropy production is convex and homogeneous degree 1

Positive deviations: \(\tilde{X}^T \tilde{f} + \tilde{w}^T \tilde{p} \geq 0 \)

1. Stable stationary states exist provided boundary control is passive
2. Entropy production is minimized (Euler-Lagrange System)
3. Relaxation possible by balancing flow dissipation vs rx
Invariants and Inventory Control

\[E(Z_3) = E(Z_1) + E(Z_2), \quad \text{First Law (convex)} \]

\[
\frac{dE}{dt} = \sum_{\text{ports}} f_j^T \eta_i - \sum_{\text{flows}} X_i^T f - \sum_{\text{source/sink}} p_k^T \eta_k
\]

"Energy production" \(\omega(f, p) = 0 \)

Electrical energy converted to heat
Potential energy converted to kinetic energy
.....

Hamitonian /Positive Real/Lossless/Conservative
Inventory Control

\[\frac{dE}{dt} = \sum_{\text{ports}} f_j^T \eta_i = g(Z,u), \quad \text{supply rate} \]

Mapping: \(\phi(Z,u) \rightarrow E^* - E \), is passive

\[g(Z,u) = -K(E - E^*) + \frac{dE^*}{dt}, \quad \text{"High Gain Control"} \]
How can the system be dissipative and lossless at the same time?

\[A(Z) = -(w_1 - w)^T (Z_1 - Z) \geq 0 \]
\[E(Z) = (\eta_1 - \eta)^T (Z_1 - Z) \geq 0 \]

Depending on the point of view - neither \(E(Z) \) nor \(S(Z) \) are positive definite on \(Z \) (Gibbs etc).

A question of observables - Dissipativity is an input output property
Modification to Storage function

\[W(Z) = \underbrace{A(Z)}_{\text{Dissipative on } \tilde{w}} + \frac{1}{2} \sum_{\text{phases}} \tilde{E}(Z)^2 + \text{other invariants?} \geq 0 \]

\[\frac{dW}{dt} = \sum_{\text{ports}} \tilde{f}_j^T \tilde{w}_i - \sum_{\text{flows}} \tilde{X}_i^T L_i \tilde{X}_i - \sum_{\text{source/sink}} \tilde{p}_k^T \tilde{w}_k + \sum_{\text{phases}} \tilde{E}\phi \]

- Lossless, needs control to stay on manifold E*
- Boundary control
- Dissipative component
- Source/sink may be dissipative
- Lossless/Hamiltonian inventory control
Other Invariants in Chemistry (103 of them)

Los Alamos National Laboratory Chemistry Division

Periodic Table of the Elements

<table>
<thead>
<tr>
<th>1A</th>
<th>2A</th>
<th>3A</th>
<th>4A</th>
<th>5A</th>
<th>6A</th>
<th>7A</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>N</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
</tr>
<tr>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
</tr>
<tr>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
</tr>
<tr>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
</tr>
<tr>
<td>Kr</td>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
</tr>
<tr>
<td>Tc</td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
<td>Ag</td>
<td>Cd</td>
<td>In</td>
<td>Sn</td>
</tr>
<tr>
<td>Sn</td>
<td>Sb</td>
<td>Te</td>
<td>I</td>
<td>Xe</td>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
</tr>
<tr>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
<td>Ir</td>
<td>Pt</td>
</tr>
<tr>
<td>Pt</td>
<td>Au</td>
<td>Hg</td>
<td>Tl</td>
<td>Pb</td>
<td>Bi</td>
<td>Po</td>
<td>At</td>
</tr>
<tr>
<td>At</td>
<td>Rn</td>
<td>Fr</td>
<td>Ra</td>
<td>Ac</td>
<td>Rf</td>
<td>Db</td>
<td>Sg</td>
</tr>
<tr>
<td>Sg</td>
<td>Bh</td>
<td>Hs</td>
<td>Mt</td>
<td>Ds</td>
<td>Rn</td>
<td>Uu</td>
<td>Uuo</td>
</tr>
<tr>
<td>Uuo</td>
<td>Lanthanide Series*</td>
<td>Actinide Series*</td>
<td>Los Alamos National Laboratory</td>
<td>Chemistry</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Carbothermic Aluminum
D. Roha O Fortini (Alcoa), Yuan Xu, Mohit Aggarwal, Balaji Sukumar

Challenges:
Multiphase CFD, turbulence
1 gas phase
2 fluid phases
2++ solid phases
50+ compounds
Electric potentials
Turbulence
5 invariants $Z = (\text{Al}, \text{C}, \text{O}, \text{U}, \text{V})$

Issues:
System Design
Stability
Optimization (kg/kW)

Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1482 1632 1817 2054 2364 2790

Carbothermic Aluminum
D. Roha O Fortini (Alcoa), Yuan Xu, Mohit Aggarwal, Balaji Sukumar

Challenges:
Multiphase CFD, turbulence
1 gas phase
2 fluid phases
2++ solid phases
50+ compounds
Electric potentials
Turbulence
5 invariants $Z = (\text{Al}, \text{C}, \text{O}, \text{U}, \text{V})$

Issues:
System Design
Stability
Optimization (kg/kW)

Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1482 1632 1817 2054 2364 2790

Carbothermic Aluminum
D. Roha O Fortini (Alcoa), Yuan Xu, Mohit Aggarwal, Balaji Sukumar

Challenges:
Multiphase CFD, turbulence
1 gas phase
2 fluid phases
2++ solid phases
50+ compounds
Electric potentials
Turbulence
5 invariants $Z = (\text{Al}, \text{C}, \text{O}, \text{U}, \text{V})$

Issues:
System Design
Stability
Optimization (kg/kW)

Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1482 1632 1817 2054 2364 2790

Carbothermic Aluminum
D. Roha O Fortini (Alcoa), Yuan Xu, Mohit Aggarwal, Balaji Sukumar

Challenges:
Multiphase CFD, turbulence
1 gas phase
2 fluid phases
2++ solid phases
50+ compounds
Electric potentials
Turbulence
5 invariants $Z = (\text{Al}, \text{C}, \text{O}, \text{U}, \text{V})$

Issues:
System Design
Stability
Optimization (kg/kW)

Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1482 1632 1817 2054 2364 2790

Carbothermic Aluminum
D. Roha O Fortini (Alcoa), Yuan Xu, Mohit Aggarwal, Balaji Sukumar

Challenges:
Multiphase CFD, turbulence
1 gas phase
2 fluid phases
2++ solid phases
50+ compounds
Electric potentials
Turbulence
5 invariants $Z = (\text{Al}, \text{C}, \text{O}, \text{U}, \text{V})$

Issues:
System Design
Stability
Optimization (kg/kW)

Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1482 1632 1817 2054 2364 2790

Carbothermic Aluminum
D. Roha O Fortini (Alcoa), Yuan Xu, Mohit Aggarwal, Balaji Sukumar

Challenges:
Multiphase CFD, turbulence
1 gas phase
2 fluid phases
2++ solid phases
50+ compounds
Electric potentials
Turbulence
5 invariants $Z = (\text{Al}, \text{C}, \text{O}, \text{U}, \text{V})$

Issues:
System Design
Stability
Optimization (kg/kW)

Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1482 1632 1817 2054 2364 2790

Carbothermic Aluminum
D. Roha O Fortini (Alcoa), Yuan Xu, Mohit Aggarwal, Balaji Sukumar

Challenges:
Multiphase CFD, turbulence
1 gas phase
2 fluid phases
2++ solid phases
50+ compounds
Electric potentials
Turbulence
5 invariants $Z = (\text{Al}, \text{C}, \text{O}, \text{U}, \text{V})$

Issues:
System Design
Stability
Optimization (kg/kW)

Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1482 1632 1817 2054 2364 2790
Aluminum atom mole balance

\[F_{\text{Al}}^{\text{in}} + 2F_{\text{Al}_2\text{O}_3}^{\text{in}} + 2F_{\text{C}_3\text{Al}_2\text{O}_3}^{\text{in}} = F_{\text{Al}_4\text{C}_3}^{\text{out}} + 2F_{\text{Al}_2\text{O}_3}^{\text{out}} + 4F_{\text{Al}_4\text{C}_3}^{\text{out}} \]

(1)

Carbon atom mole balance

\[F_{\text{C}_3}^{\text{in}} + F_{\text{CO}_2}^{\text{in}} = F_{\text{C}_3}^{\text{out}} + F_{\text{CO}_2}^{\text{out}} + 3F_{\text{Al}_4\text{C}_3}^{\text{out}} \]

(2)

Oxygen atom mole balance

\[F_{\text{Al}_2\text{O}_3}^{\text{in}} + F_{\text{CO}_2}^{\text{in}} + 3F_{\text{Al}_2\text{O}_3}^{\text{in}} = F_{\text{Al}_2\text{O}_3}^{\text{out}} + F_{\text{CO}_2}^{\text{out}} \]

(3)

% Recovery of Al metal

- 100%
- 80%
- 60%
- 40%
- 20%

Mole Fraction of Al\(_4\)C\(_3\)

- Simulation
- Design Relation with 75% Recovery

Kg flow of gas / Kg flow of carbon
The structure of thermodynamics and Control
Luiz Felipe Tavares (March 21, 2003)

Input-Output theory
- Clausius Kelvin Theory
- Efficiency of reversible processes
- Carnot Caratheodory
- Finite Time Thermodynamics
- Efficiency of irreversible processes
- Berry, Salamon, Andresen

Thermodynamics
- Gibbs Theory
- Stability of equilibrium states
- Tisza, Callen
- Irreversible thermodynamics
- Stability of steady states close to equilibrium
- Onsager, Prigogine, Glansdorff

Internal Stability
- Passivity theory
- Input-output operators
- Desoer, Willems
- Stability theory
- Stability of "equilibrium" states
- Lyapunov, Kalman, ..