

The Self-Organising Maps for Data Visualisation and Principal Manifold Mapping

Hujun Yin The University of Manchester

PCA, MDS, Principal Curve/Surface
SOM: Background & Data Visualisation
ViSOM & Principal Curve/Surface
Kernel Method, SOM & Mixture Model
Conclusions

PCA is a linear coordinate transformation

- To reduce the dimensionality of the data set
- To identify new "meaningful" (hidden) variables

$$\min \sum_{\mathbf{x}} \| X - \sum_{j=1}^{m} (\mathbf{q}_{j}^{T} X) \mathbf{q}_{j} \|^{2}$$
$$\max \{ \mathbf{q}_{i}^{T} \mathbf{C} \mathbf{q}_{i} = \sigma_{i}^{2} \}, \ \mathbf{q}_{i} \perp \mathbf{q}_{j}, i \neq j$$

- X: n-dimensional vector, zero-mean
- { \mathbf{q}_{j} }: orthogonal, eigenvectors of data covariance $\mathbf{C}=E[XX^{T}]$
- $m \le n$ $|\mathbf{C} - \lambda_i \mathbf{I}| = 0$ PCA decomposition $(\mathbf{C} - \lambda_i \mathbf{I}) \mathbf{q}_i = 0$ $\mathbf{Q}^T E[XX^T] \mathbf{Q} = \mathbf{\Lambda}$
- simple, direct visualisation
 stable (fast) solution

- $\mathbf{Q}=[\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n]$ • $\mathbf{\Lambda}=\text{diag} [\lambda_1, \lambda_2, \dots, \lambda_n]$ • $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n$ eigenvalues or variances
- inear mappingbatch operation

www.manchester.ac.uk

August 2006

PCA: Example – Iris data • 150 4-D vectors Iris setosa 3 Iris versicolor • 3 categories, 50 points each +Iris virginica 4.9 0.2 2 3.0 1.4 47 32 1.3 0.2 4.6 3.1 0.2 1.5 1 5.0 3.6 1.4 0.2 54 3.9 1.7 0.4 4.6 3.4 1.4 0.3 0 70 3.2 4.7 1.4 3.2 64 4.5 1.5 -1 3.1 4.9 1.5 6.9 55 2.3 4.0 1.3 2.8 1.5 -2 6.5 4.6 2.8 5.7 4.5 1.3 -3 6.3 3.3 6.0 2.5 5.8 2.7 5.1 1.9 7.1 3.0 5.9 2.1 -4 6.3 2.9 5.6 1.8 -2 -3 -1 0 1 2 3 -4 4 3.0 6.5 5.8 2.2 6.6 2.1 7.6 3.0 Projection onto the 1st×2nd eigenvectors

MDS: Sammon Mapping

$$S_{Sammon} = \frac{1}{\sum_{i < j} d_{ij}^*} \sum_{i < j} \frac{[d_{ij}^* - d_{ij}]^2}{d_{ij}^*}$$

*d_{ij}**: inter-point distance in original space *d_{ij}*: inter-point distance in projected plot

integration integration integration

point-point mapping (no function)computational intensive

www.manchester.ac.uk

August 2006

Principal Curve/Surface

Principal curve was defined by Hastie and Stuetzle (1989) as a smooth and self-consistent curve passing through the "middle" of the data.

principled nonlinear extension of PCA
smooth mapping function

Projection:

$$\rho_f(\mathbf{x}) = \sup_{\rho \in \Lambda} \{ \rho : \|\mathbf{x} - f(\rho)\| = \inf_{\mathcal{G}} \|\mathbf{x} - f(\mathcal{G})\|$$

Expectation:

$$f(\rho) = E[\mathbf{X} | \rho_f(\mathbf{X}) = \rho]$$

Kernel smoothing:

$$F(\rho) = \frac{\sum_{i}^{S} \mathbf{x}_{i} \kappa(\rho, \rho_{i})}{\sum_{i}^{S} \kappa(\rho, \rho_{i})}$$

iack good algorithm, esp. in 2D
boundary problems

www.manchester.ac.uk

August 2006

The Universit of Mancheste

2. SOM: Background

SOM: Background–Hebbian Learning

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic changes take place in one or both cells such that A's efficiency as one of the cells firing B, is increased. (Donald Hebb, 1949)

In mathematical term: $\Delta w = \alpha x y$

Oja' rule:

$$w_{i}(t+1) = \frac{w_{i}(t) + \alpha x_{i}(t)y(t)}{\{\sum_{j=1}^{n} [w_{j}(t) + \alpha x_{j}(t)y(t)]^{2}\}^{1/2}} \approx w_{i}(t) + \alpha y(t)[x_{i}(t) - y(t)w_{i}(t)] + O(\alpha^{2})$$

www.manchester.ac.uk

2. SOM: Background

SOM: Background–Lateral Inhibition

The Univ of Manc

2. SOM: Background

SOM: Background–Lateral Inhibition

from V. Bruce & P.R Green

Hartline, et al. 1960s

It explains <u>Mach-band</u> <u>effect</u> and <u>abstraction</u> <u>purpose</u>

www.manchester.ac.uk

August 2006

The Universit of Mancheste

2. SOM: Background

SOM: Background - Model

Hebbian learning (Hebb 1949) $\Delta w = \alpha x y$

von der Malsburg and Willshaw's model (1973, 1976)

$$\frac{\partial y_i(t)}{\partial t} + cy_i(t) = \sum_j w_{ij}(t)x_i(t) + \sum_k e_{ik}y_k(t) - \sum_{k'} b_{ik'}y_{k'}(t)$$

$$\frac{\partial w_{ij}(t)}{\partial t} = \alpha x_i(t)y_j^*(t), \text{ subject to } \sum w_{ij} = \text{constant}$$

$$y_j^*(t) = \begin{cases} y_j^*(t) - \theta, \text{ if } y_j^*(t) > \theta \\ 0 & \text{otherwise} \end{cases}$$

Kohonen's model (1982) is an abstraction of von der Malsburg and Willshaw's model

$$y_{j}(t+1) = \varphi[\mathbf{w}_{j}^{T}\mathbf{x}(t) + \sum_{i} h_{ij}y_{i}(t)]$$

$$\frac{\partial w_{ij}(t)}{\partial t} = \alpha y_{j}(t)x_{i}(t) - \beta y_{j}(t)w_{ij}(t)$$

$$= \alpha [x_{i}(t) - w_{ij}(t)]y_{j}(t) = \begin{cases} \alpha [x_{i}(t) - w_{ij}(t)], \text{ if } j \in \eta(t) \\ 0 & \text{ if } j \notin \eta(t) \end{cases}$$

$$\mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ \vdots \\ x_{n} \end{bmatrix}$$

www.manchester.ac.uk

August 2006

The University of Manchestel

2. SOM: The Algorithm

SOM: Algorithm

• At each time t, present an input, $\mathbf{x}(t)$, select the winner.

$$v = \arg\min_{c \in \Omega} \left\| \mathbf{x}(t) - \mathbf{w}_c \right\|$$

• Updating the weights of winner and its neighbours.

 $\Delta \mathbf{w}_{k}(t) = \alpha(t)\eta(v,k,t)[\mathbf{x}(t) - \mathbf{w}_{v}(t)]$

• *Repeat until the map converges.*

Typical neighbourhood function:

 $\eta(v,k,t) \propto \exp[-\frac{\|v-k\|^2}{2\sigma(t)^2}]$

2. SOM: Interpretation

SOM: Quantisation, Topology & Cost Function

Topologically "ordered" map

$$E(\mathbf{w}_1, \dots, \mathbf{w}_N) = \sum_i \int_{V_i} \sum_k h_{i,k} \|\mathbf{x} - \mathbf{w}_k\|^2 p(\mathbf{x}) d\mathbf{x}$$

(Heskes, 1999)

"Error tolerant" coding -HVQ (Luttrell, NC 1994)

"Minimum wiring" (Mitchison, NC 1995), (Durbin&Mitchson, Nature1990)

August 2006

The University of Manchestel

2. SOM: Variants/Extensions

SOM: Variants & Extensions

- HVQ (Luttrell 1989)
- **HSOM** (Miikkulainen 1990), **DISLEX** (1990, 1997)
- **PSOM** (Ritter 1993), **Hyperbolic SOM** (1999), **H²SOM**
- Temporal Kohonen Map (Chappell & Taylor 1993)
- **Neural Gas**(Martinetz et al.1991) **Growing Grid**(Fritzke1995)
- ASSOM (Kohonen 1997)
- Recurrent SOM (Koskela, 1997)
- Bayesian SOM & SOMN (Yin&Allinson 1995,1997; Utsugi 1997)
- **GTM** (Bishop et al. 1998)
- GHSOM (Merkl et al. 2000)
- **PicSOM** (Laaksonen, Oja, et al., 2000)
- ViSOM (Yin 2001, 2002)

SOM: Applications -Snapshots

www.manchester.ac.uk

August 2006

The Universit

2. SOM: Applications

SOM: Applications -Snapshots

A Temporal Shape Metric :

Co-Expression Coefficient (Möller-Levet & Yin, Int. J. Neural Systems, 15: 311-322, 2005)

$$ce(x, y) = \frac{\int x' y' dt}{\sqrt{\int x'^2 dt \int y'^2 dt}}$$

Foreign exchange modelling :

SOM+local SVM (H. Ni & Yin, 2006)

	SOM+MLP	HSOM	Neural Gas	GARCH	ARMA
Mean Square Error (e-005)	2.05	4.11	2.65	2.90	2.94
Correct Prediction (%)	73.62	50.55	65.38	51.11	52.2

www.manchester.ac.uk

August 2006

The Univ of Manc

2. SOM: Data Visualisation

SOM: Data Visualisation – Dimensionality Reduction

topology preserving mapping
(discrete) mapping function

in a constraint of the second second

www.manchester.ac.uk

August 2006

The University of Manchester

2. SOM: Data Visualisation

SOM: Data Visualisation –Knowledge Management

courtesy of S. Kaski and T. Kohonen

Tree-View SOM

ViSOM: Algorithm

MANCHESTER

- Grid structure and winner selection same to SOM
- Updating $\Delta \mathbf{w}_{k}(t) = \alpha(t)\eta(v,k,t) \left([\mathbf{x}(t) - \mathbf{w}_{v}(t)] + [\mathbf{w}_{v}(t) - \mathbf{w}_{k}(t)] \frac{(d_{vk} - \Delta_{vk}\lambda)}{\Delta_{vk}\lambda} \right)$
- Refreshing

At certain iterations (e.g. 20%), choosing a neuron randomly and using its weight as an alternative input.

$$\Delta \mathbf{w}_{k} = \mathbf{w}_{k}(t) + \alpha(t)\eta(v,k,t) \left([\mathbf{x}(t) - \mathbf{w}_{v}(t)] + [\xi + (1 - \xi)(\frac{d_{vk}}{\Delta_{vk}\lambda} - 1)][\mathbf{w}_{v}(t) - \mathbf{w}_{k}(t)] \right)$$

www.manchester.ac.uk

ViSOM: Examples

ViSOM: Examples

www.manchester.ac.uk

August 2006

ViS	ОМ:	Examp	les
		· · · · · · · · · · · · · · · · · · ·	

Ranking table of UK universities

		•		- 5	source: T	he Sunda	y Times, I	8 Septen	ıber 2000	
Ranking	University	F1	F2	F3	F4	F5	<i>F6</i>	<i>F7</i>	Total	
1	Cambridge	241	182	247	97	88	100	50	1005	
2	Oxford	214	175	244	97	81	100	30	941	
3	LSE	200	175	233	97	68	100	50	923	
4	Imperial	203	154	232	98	67	100	10	864	
5	York	206	143	208	94	63	76	60	850	
6	UCL	172	152	210	95	71	100	30	830	
7	St Andrews	139	131	194	96	73	91	100	824	
8	Warwick	153	155	215	97	69	86	20	795	
9	Bath	132	142	211	97	66	83	60	791	
9	Nottingham	176	125	218	96	74	72	30	791	
11	Bristol	145	131	218	96	75	94	20	779	
11	Durham	163	132	207	91	64	72	50	779	F1:Kesearch
11	Edinburg	106	145	218	96	74	100	40	779	F2·Teaching
14	Lancaster	156	144	186	95	62	63	50	756	
15	UMIST	135	144	188	97	58	100	30	752	F3:A-levels
16	Birmingham	146	127	204	96	67	87	20	747	F4. Employment
17	Loughborough	162	115	177	95	57	66	60	732	14.Lmpi0ymeni
18	Southampton	143	124	180	93	55	71	50	716	F5:S/S ratio
19	King's College	135	126	204	96	63	100	-10	714	E6.1st/2.1s
20	Newcastle	134	117	193	97	60	87	20	708	F 0.15 l/2.15
21	Manchester	125	134	198	96	66	98	-10	707	F7:Dropout rate
22	Leeds	122	127	199	97	61	74	20	700	I I I I I I I I I I I I I I I I I I I
23	Sheffield	143	125	213	97	61	72	-20	691	
24	East Anglia	125	127	176	96	63	60	40	687	
24	Leicester	125	120	183	94	52	93	20	687	

T

3. ViSOM & Principal Curve/Surface

oCambridge

ViSOM : Examples	oOxford		League "map"
1	oLSE		e i
oin	perial	oYork	
	oUCL oNottingham	n	
	oWarwick	oDurham oLancaster	oSt Andrews
o\$DAS oSheffield ^{QKing's Coll}	oBiristol oUMIST ege oEdinburgh	oBath oSouthampton	cLoughborough
cMancheste oCardiff	- OLeeds OGlasgow OLeicester ORoyal Holl OSussex OReading OLiverpool OHull OKeeleoddsmiths	oEast Anglia oEssex oway oExeter oQueen's,Belfast oSumey oGuance oAberystwyth usen Mary & Westfield gCranfield oBrunel	oBangor
o#berdeen	oStratholyde oDundee _{oK} oBradford oCity Unive	oursity oUlster	oOxford Brookes ONorthumbria
	oSalford oHeriot-Watt	otampeter	oWest England oPlymouth oPortsmouth oKingston
oGizganı Caladonian	oR oCentral Lancas oDe Montfort oG oGlamorgan cénglia entral England oSunderland	oNottingham Trent John Moores John Moores Augustation Middlesex Middlese	oBrighton Ottanchester Metropolitan olnstitute Cardiff OWestringfer OHertfordshire affordshire eds Metropolitan rby oLincoInshire
oEast London oSouth Bank			oThames Valley

August 2006

ViSOM: A Discrete Principal Curve/Surface (Yin, Neural Networks, 15: 1005-1016, 2002)

Projection:

$$\rho_f(\mathbf{x}) = \sup_{\rho \in \Lambda} \{\rho : \|\mathbf{x} - f(\rho)\| = \inf_{\mathcal{G}} \|\mathbf{x} - f(\mathcal{G})\|$$

Expectation:

$$f(\rho) = E[\mathbf{X} | \rho_f(\mathbf{X}) = \rho]$$

Kernel smoothing:

$$F(\rho) = \frac{\sum_{i}^{S} \mathbf{x}_{i} \kappa(\rho, \rho_{i})}{\sum_{i}^{S} \kappa(\rho, \rho_{i})}$$

SOM/ViSOM smoothing:

$$\mathbf{w}_{k} = \frac{\sum_{i}^{S} \mathbf{x}_{i} h(k,i)}{\sum_{i}^{S} h(k,i)}$$

SOM: $||k-i|| \neq ||\mathbf{w}_k - \mathbf{w}_i||$ ViSOM: $||k-i|| \approx ||\mathbf{w}_k - \mathbf{w}_i||$

of Manchester **NUSON**

3. ViSOM & Principal Curve/Surface

ViSOM: STVQ (Graeple, Burger&Obermayer, Phys. Rev. E 1997) +ViSOM → PRSOM(Wu&Chow IEEE-TNN 16(6), 2005)

$$w_j(t+1) = w_j(t) + \varepsilon(t) p'_j(x(t)) \left[\sum_{i=1}^N p_i(x(t)) \left([x(t) - w_i(t)] + \gamma \left[w_i(t) - w_j(t) \right] \left(\frac{d_{ij}^2 - \lambda \Delta_{ij}^2}{\lambda \Delta_{ij}^2 + I_{ij}} \right) \right) \right].$$

$$E = F_{vq} + \gamma F_{reg} = \frac{1}{2} \sum_{t=1}^{M} \left\| \sum_{j=1}^{N} p_j \left(x(t) \right) \left[x(t) - w_j \right] \right\|^2$$
$$+ \frac{\gamma}{8} \sum_{t=1}^{M} \sum_{j=1}^{N} \sum_{m=1}^{N} p_j \left(x(t) \right) p_m \left(x(t) \right) \frac{\left(d_{jm}^2 - \lambda \Delta_{jm}^2 \right)^2}{\left(\lambda \Delta_{jm}^2 + I_{jm} \right)}$$

The University of Manchester

3. ViSOM & Principal Curve/Surface

Other PC/S algorithms:

- <u>SOM</u> has been related to PC/S and termed discrete PC/S by *Ritter, Martinetz & Schulten in 1992.* However, the differences are:
 - ^o Projection onto nodes instead of curve/surface
 - ^o Smoothing is governed by indexes in the map space, not the input space

$$\mathbf{w}_{k} = \frac{\sum_{i}^{S} \mathbf{x}_{i} h(k,i)}{\sum_{i}^{S} h(k,i)} \qquad F(\rho) = \frac{\sum_{i}^{S} \mathbf{x}_{i} \kappa(\rho,\rho_{i})}{\sum_{i}^{S} \kappa(\rho,\rho_{i})}$$

SOM: $||k-i|| \neq ||\mathbf{w}_k - \mathbf{w}_i|| = ||\rho - \rho_i||$ ViSOM: $||k-i|| \approx ||\mathbf{w}_k - \mathbf{w}_i||$

More importantly for the SOM, one cannot get the curve/surface at any point other than the nodes, even with interpolations.

<u>GTM</u> (generative topographic mapping) and <u>PPS</u> (probabilistic principal surface) are parametrised SOMs with GTM using spherical and PPS oriented Gaussians for the nodes.

www.manchester.ac.uk

Other PC/S algorithms:

- Polygonal Algorithm: proposed by Kégl, et al 1999 for incrementally constructing PC:
 - ^o Consist of (connected) line segments and vertexes with total length constant.
 - The number of segments or vertexes is increasing to a certain level.

$$\Delta(\mathbf{x}, f) = \min_{\rho} \|\mathbf{x} - f(\rho)\|^2 \qquad F = \arg\min\{\frac{1}{n}\sum_{\substack{i=1\\f\in S}}^n \Delta(\mathbf{x}_i, f)\}$$

- ^o Projection (most data points) on segments instead of nodes (vertexes).
- New vertex is added to the longest segment (middle point).

www.manchester.ac.uk

August 2006

Other PC/S algorithms:

- **Isomap:** proposed by *Tenenbaum, Silva and Langford 2000* for nonlinear dimensionality reduction.
 - **Construct neighbourhood graph:** by $d_X(i,j) \le \varepsilon$ or *K* nearest neighbours.
 - Compute the shortest (geodesic) paths: $\min\{d_G(i,j), d_G(i,k) + d_G(k,j)\}$.
 - ^o Construct low dimension embedding: by applying MDS,

Other PC/S algorithms:

- Local Linear Embedding: proposed by Roweis and Saul 2000 also for dimensionality reduction.
 Select neighbors
 - ^o Select neighbourhood graph:
 - K nearest neighbours.
 - ^o Reconstruct linear weights:

$$\varepsilon(W) = \min \sum_{i} ||X_i - \sum_{j} W_{ij} X_j||^2$$

• Compute embedding coordinates Y:

$$\Phi(Y) = \min \sum_{i} ||Y_i - \sum_{j} W_{ij}Y_j||^2$$

Examples:

www.manchester.ac.uk

Kernel SOM: Background

• Kernel method has become popular.

$$\phi: X \to F, \qquad \mathbf{x} \mapsto \phi(\mathbf{x})$$

$$\kappa: X \times X \in \mathfrak{R}, \qquad \kappa(\mathbf{x}; \mathbf{y}) = \left\langle \phi(\mathbf{x}), \phi(\mathbf{y}) \right\rangle$$

• PCA

$$\mathbf{C}\mathbf{q} = \lambda \mathbf{q}, \quad \mathbf{C} = \frac{1}{n} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}, \quad \mathbf{q} = \sum_{i} \alpha_{i} \mathbf{x}_{i},$$

• Kernel PCA

$$\mathbf{K}\boldsymbol{\alpha} = \lambda\boldsymbol{\alpha}, \quad K_{ij} \coloneqq \left\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \right\rangle, \qquad \boldsymbol{\alpha} = [\alpha_1, \alpha_2, \dots, \alpha_n]^T,$$
$$\mathbf{q} = \sum_i \alpha_i \phi(\mathbf{x}_i), \qquad \left\langle \phi(\mathbf{x}_k), \mathbf{q} \right\rangle = \sum_i \alpha_i \kappa(\mathbf{x}_k, \mathbf{x}_i),$$

The University of Manchester

4. Kernel SOM & Mixture Model

KM-Kernel SOM (MacDonald & Fyfe 2000):

$$\phi: \mathbf{x} \to F \qquad \mathbf{x} \mapsto \phi(\mathbf{x}), \qquad \mathbf{m}_{i} = \sum_{n} \alpha_{i,n} \phi(\mathbf{x}_{n}),$$
$$\|\phi(\mathbf{x}) - \mathbf{m}_{i}\|^{2} = \|\phi(\mathbf{x}) - \sum_{n} \alpha_{i,n} \phi(\mathbf{x}_{n})\|^{2}$$
$$= \kappa(\mathbf{x}, \mathbf{x}) - 2\sum_{n} \alpha_{i,n} \kappa(\mathbf{x}, \mathbf{x}_{n}) + \sum_{n,m} \alpha_{i,n} \alpha_{i,m} \kappa(\mathbf{x}_{n}, \mathbf{x}_{m})$$
$$\mathbf{m}_{i}(t+1) = \mathbf{m}_{i}(t) + \Lambda[\phi(\mathbf{x}) - \mathbf{m}_{i}(t)], \qquad \Lambda = \frac{\zeta_{i}(\mathbf{x}), j}{\sum_{n=1}^{t+1} \zeta_{i,n}}$$
$$\alpha_{i,n}(t+1) = \begin{cases} \alpha_{i,n}(t)(1-\Lambda), & \text{for } n \neq t+1 \\ \zeta, & \text{for } n = t+1 \end{cases}$$

August 2006

GD-Kernel SOM (Andras 2002; Pan et al. 2004):

$$v = \arg\min_{i} ||\mathbf{x} - \mathbf{m}_{i}||^{2} \qquad v = \arg\min_{i} ||\phi(\mathbf{x}) - \phi(\mathbf{m}_{i})||^{2}$$
$$\mathbf{m}_{i}(t+1) = \mathbf{m}_{i}(t) + \alpha(t)h(v(\mathbf{x}),i)\nabla J(\mathbf{x},\mathbf{m}_{i})$$
$$J(\mathbf{x},\mathbf{m}_{i}) = ||\phi(\mathbf{x}) - \phi(\mathbf{m}_{i})||^{2} = \kappa(\mathbf{x},\mathbf{x}) + \kappa(\mathbf{m}_{i},\mathbf{m}_{i}) - 2\kappa(\mathbf{x},\mathbf{m}_{i})$$
$$\nabla J(\mathbf{x},\mathbf{m}_{i}) = \frac{\partial\kappa(\mathbf{m}_{i},\mathbf{m}_{i})}{\partial\mathbf{m}_{i}} - 2\frac{\partial\kappa(\mathbf{x},\mathbf{m}_{i})}{\partial\mathbf{m}_{i}}$$
$$v = \arg\min_{i} J(\mathbf{x},\mathbf{m}_{i}) = \arg\min_{i} [-2\kappa(\mathbf{x},\mathbf{m}_{i})] = \arg\min_{i} [-\exp(-\frac{||\mathbf{x} - \mathbf{m}_{i}||^{2}}{2\sigma^{2}})]$$
$$\mathbf{m}_{i}(t+1) = \mathbf{m}_{i}(t) + \alpha(t)h(v(\mathbf{x}),i)\frac{1}{2\sigma^{2}}\exp(-\frac{||\mathbf{x} - \mathbf{m}_{i}||^{2}}{2\sigma^{2}})(\mathbf{x} - \mathbf{m}_{i})$$

August 2006

www.manchester.ac.uk

Kernel SOM:

Table: Classification errors on UCI colon cancer dataset. M, A andV denote the minimum distance, average distance and majorityvoting methods to label the nodes.

Kernel	Type I Kernel SOM			Type II Kernel SOM			SOM		
	М	A	V	М	A	V	М	А	V
Gaussian	5.6	5.8	5.6	5.3	5.3	5.7	4.3	7.0	3.8
Cauchy	5.5	5.6	5.5	5.5	5.5	4.8			
Log	4.6	4.6	4.6	5.2	5.2	4.6			

Mixture Model:

$$p(\mathbf{x} \mid \Theta) = \sum_{i=1}^{K} p_i(\mathbf{x} \mid \theta_i) P_i$$

Kullback-Leibner divergence:

$$\mathbf{I} = -\int \log \frac{\hat{p}(\mathbf{x})}{p(\mathbf{x})} p(\mathbf{x}) d\mathbf{x}$$
$$\frac{\partial}{\partial \theta_i} = -\int \left[\frac{1}{\hat{p}(\mathbf{x} \mid \hat{\Theta})} \frac{\partial \hat{p}(\mathbf{x} \mid \hat{\Theta})}{\partial \theta_i}\right] p(\mathbf{x}) d\mathbf{x}$$

Self Organising Mixture Network

(Yin & Allinson IEEE Trans Neural Networks, 12:405-411, 2001)

$$\hat{\theta}_{i}(t+1) = \hat{\theta}_{i}(t) + \alpha(t)h(v(\mathbf{x}),i)\left[\frac{1}{\hat{p}(\mathbf{x}\mid\hat{\Theta})}\frac{\hat{\mathcal{O}}p(\mathbf{x}\mid\hat{\Theta})}{\partial\theta_{i}}\right]$$
$$= \hat{\theta}_{i}(t) + \alpha(t)h(v(\mathbf{x}),i)\left[\frac{\hat{P}_{i}(t)}{\sum_{j}\hat{P}_{i}(t)\hat{p}_{j}(\mathbf{x}\mid\theta_{j})}\frac{\hat{\mathcal{O}}p_{i}(\mathbf{x}\mid\hat{\theta}_{i})}{\partial\theta_{i}}\right]$$

$$\hat{P}_i(t+1) = \hat{P}_i(t) + \alpha(t) \left[\frac{\hat{p}_i(\mathbf{x} \mid \hat{\theta}_i)\hat{P}_i(t)}{\hat{p}(\mathbf{x} \mid \hat{\Theta})} - \hat{P}_i(t)\right] = \hat{P}_i(t) - \alpha(t)h(v(\mathbf{x}), i)[\hat{P}(i \mid \mathbf{x}) - \hat{P}_i(t)]$$

$$v = \arg\max_{i} \{\hat{P}(i \mid \mathbf{x}) = \frac{\hat{P}_{i}\hat{p}_{i}(\mathbf{x} \mid \hat{\theta}_{i})}{\hat{p}(\mathbf{x} \mid \hat{\Theta})}\}$$

The University of Manchester

4. Kernel SOM & Mixture Model

Self Organising Mixture Network:

Homoscedastic case

 $v = \arg\max_{i} \frac{\hat{p}_{i}(\mathbf{x} \mid \theta_{i})}{\sum_{j} \hat{p}_{i}(\mathbf{x} \mid \theta_{j})}$

$$\mathbf{m}_{i}(t+1) = \mathbf{m}_{i}(t) + \alpha(t)h(v(\mathbf{x}), i) \frac{1}{\sum_{j} p_{j}(\mathbf{x} \mid \theta_{j})} \frac{\partial p_{i}(\mathbf{x} \mid \theta_{i})}{\partial \mathbf{m}_{i}}$$

The University of Manchester

4. Kernel SOM & Mixture Model

Self Organising Mixture Network:

Homoscedastic and Gaussian case

$$v = \arg\max_{i} [\exp(-\frac{\|\mathbf{x} - \mathbf{m}_{i}\|^{2}}{2\sigma^{2}})]$$

$$\mathbf{m}_{i}(t+1) = \mathbf{m}_{i}(t) + \alpha(t)h(v(\mathbf{x}), i)\frac{1}{2\sigma^{2}}\frac{1}{\sum_{j}p_{j}(\mathbf{x} \mid \theta_{j})}\exp(-\frac{||\mathbf{x} - \mathbf{m}_{i}||^{2}}{2\sigma^{2}})(\mathbf{x} - \mathbf{m}_{i})$$

The same as those of Kernel SOM !!

(Yin, Neural Networks, 19: 780-784, 2006)

August 2006

5. Summary

- SOMs are a useful tool for clustering and visualisation and management (organisation.
- ViSOM is particularly suited for direct data visualisation or manifold mapping where distance preserving (and topology) is important.
- Kernel SOM is linked to mixture model (probabilistic) and thus can outperform SOM in some cases when parameters are optimised.
- SOM approximates a natural kernel method.

Dataset II – samples: ViSOM

MANCHESTER 1824

Dataset II - samples: PCA

3

The

Dataset II - 500 genes: PCA Sammon / ViSOM(100x100)

www.manchester.ac.uk

Dataset II - all genes: PCA/ ViSOM (50x50)

Thank You!

Questions ?

www.manchester.ac.uk

August 2006