Analysis of the Constrained Runs Algorithm(s)

Antonios Zagaris
zagaris@cwi.nl

UvA
KdV Institute for Mathematics
Amsterdam, The Netherlands

CWI
Modelling, Analysis & Simulation

Jointly with C. W. Gear†, T. J. Kaper‡, I. G. Kevrekidis†

†: Princeton University, USA
‡: Boston University, USA

Funded by NWO
Outline

- setting of the problem
- the zero-derivative principle
- the constrained runs scheme
- summary
Outline

setting of the problem

the zero-derivative principle

the constrained runs scheme

summary
Micro-to-Macroscale Reduction

Available

\[\begin{array}{c}
\text{microscopic} \\
\text{mesoscopic}
\end{array} \begin{array}{c}
\text{analytic} \\
\text{computer}
\end{array} \] model

Desired

All kinds of macroscopic information
Micro-to-Macroscopic Reduction

Available

\[A \left\{ \begin{array}{c} \text{microscopic} \\ \text{mesoscopic} \end{array} \right\} \left\{ \begin{array}{c} \text{analytic} \\ \text{computer} \end{array} \right\} \text{model} \]

Desired

All kinds of \textit{macroscopic} information

Issues

- Full-scale simulations \textit{prohibitive}
- Macroscopic model \textit{unavailable}
Micro-to-Macroscale Reduction

Available

\[
\begin{align*}
\text{A} & \left\{ \begin{array}{c}
\text{microscopic} \\
\text{mesoscopic} \\
\text{analytic} \\
\text{computer}
\end{array} \right\} \text{ model}
\end{align*}
\]

Desired

All kinds of \textit{macroscopic} information

Issues

- Full-scale simulations \textit{prohibitive}
- Macroscopic model \textit{unavailable}

Resolution

- \textbf{Projective integration} schemes
- \textbf{Micro-simulations} + \textbf{Time extrapolation} \Rightarrow \textbf{Macro-info}
Micro-to-Macro Dynamics

Microscopic simulations

Micro-to-Macro Dynamics

Microscopic simulations \Rightarrow Macroscopic information

```
restrict

{\text{macroscopic solution}}

{t + dt} \quad {t + 2dt} \quad t

e\text{extrapolate}

{\text{macroscopic solution}}

t

lift

t + T
```
Micro-to-Macro Dynamics

Microscopic simulations \Rightarrow **Macroscopic information**

The lifting step is a **one-to-many** map.
Reduction of Multiscale Dynamics

\[
\begin{align*}
\mathbf{w}_1 &= \mathbf{w}_1(t) \quad \text{macroscopic variables (lower moments)} \\
\mathbf{w}_2 &= \mathbf{w}_2(t) \quad \text{slaved variables (higher moments)}
\end{align*}
\]

\[
\mathbf{w}_2 = H(\mathbf{w}_1)
\]

slaved dynamics

\[
\begin{align*}
\mathbf{w}_2 &= H(\mathbf{w}_1)
\end{align*}
\]

reduction

\[
\begin{align*}
\mathbf{w}'_1 &= g_1(\mathbf{w}_1, H(\mathbf{w}_1))
\end{align*}
\]

reduced dynamics
Lifting Scheme
Lifting Scheme

2-step Iterative Lifting

- Integrate until relaxation surface is reached
- Reset $w_1 = w_1^*$
Outline

- setting of the problem

- the zero-derivative principle

- the constrained runs scheme

- summary
The Zero-derivative Principle

\[w_1' = g_1(w) \quad \text{where } w_1 \begin{cases} \text{describe the macro-dynamics} \\ \text{parameterize the manifold} \end{cases} \]

- Fix \(w_1 = w_1^* \)
- Choose \(m \in \{0, 1, \ldots\} \)
- Approximate \(H(w_1^*) \) by \(w_2^* \) obtained via

\[
\left. \frac{d^{m+1}w_2}{dt^{m+1}} \right|_{(w_1^*, w_2^*)} = 0
\]

zero-derivative principle
The Zero-derivative Principle

\[\begin{align*}
w'_1 &= g_1(w) \\
w'_2 &= g_2(w)
\end{align*} \]

where \(w_1 \) describes the macro-dynamics and \(w_2 \) parameterizes the manifold.

- Fix \(w_1 = w_1^* \)
- Choose \(m \in \{0, 1, \ldots\} \)
- Approximate \(H(w_1^*) \) by \(w_2^* \) obtained via

\[
\left. \frac{d^{m+1} w_2}{dt^{m+1}} \right|_{(w_1^*, w_2^*)} = 0
\]

zero-derivative principle

How close is \(w_2^* \) to \(H(w_1^*) \)? proximity
Singular Perturbation Setting

Original System

\[
\begin{align*}
 w'_1 &= g_1(w) \\
 w'_2 &= g_2(w)
\end{align*}
\]
Singular Perturbation Setting

Original System

\[
\begin{align*}
 w_1' &= g_1(w) \\
 w_2' &= g_2(w)
\end{align*}
\]

\[
\begin{align*}
 w_2 &= H(w_1) \quad \text{w}_{\rightarrow} \text{x} \quad \text{w}_{\leftarrow} \text{x}
\end{align*}
\]

Slow-Fast System

\[
\begin{align*}
 x_1' &= r_1(x, \varepsilon) \\
 \varepsilon x_2' &= r_2(x, \varepsilon)
\end{align*}
\]
Singular Perturbation Setting

Original System

\[
\begin{align*}
 w_1' &= g_1(w) \\
 w_2' &= g_2(w)
\end{align*}
\]

\[
\begin{array}{c}
\text{w} \rightarrow \text{x} \\
\text{w} \leftarrow \text{x}
\end{array}
\]

Slow-Fast System

\[
\begin{align*}
 x_1' &= r_1(x, \varepsilon) \\
 \varepsilon x_2' &= r_2(x, \varepsilon)
\end{align*}
\]

\[
\text{Re } (\sigma (\partial r_2 / \partial x_2) \mid_S) \subset \mathbb{R}^-
\]

normal hyperbolicity
Proximity Results

Theorem (GKKZ 2005). Let \(m \in \{0, 1, \ldots\} \) and assume that

\[
\begin{align*}
\det (\partial w_2 / \partial x_2) &\neq 0 \\
\det (\partial g_2 / \partial w_2) &\neq 0
\end{align*}
\]

inclusion of fast directions
hyperbolicity in \(w_2 \)-direction

in a neighborhood of the manifold. Then, the condition

\[
\frac{d^{m+1} w_2}{dt^{m+1}} \bigg|_{(w_1^*, w_2)} = 0
\]

has an isolated solution \(w_2^* \) asymptotically close to \(H(w_1^*) \),

\[
w_2^* - H(w_1^*) = O(\varepsilon^{m+1}), \quad \varepsilon \downarrow 0.
\]
Outline

- setting of the problem
- the zero-derivative principle
- the constrained runs scheme
- summary
Constrained Runs Algorithms

- **CHOOSE** \(m \in \{0, 1, \ldots\} \) order of the method
- **FIX** \(w_1 = w_1^* \) & **SEED** with \(w_2^{(0)} \) initial guess
- **ITERATE** using

\[
w_2^{(n+1)} = F_m \left(w_2^{(n)} \right) = w_2^{(n)} - (-h)^{m+1} \left. \frac{d^{m+1} w_2}{d t^{m+1}} \right|_{(w_1^*, w_2^{(n)})}
\]

- **STOP** when converged to \(w_2 = w_2^{(#)} \) converged \(w_2 \)
- **SET** \(w_2^{(#)} \approx w_2^* \approx H(w_1^*) \) approximate slow manifold
Constrained Runs Algorithms

- **CHOOSE** \(m \in \{0, 1, \ldots\} \) order of the method
- **FIX** \(w_1 = w_1^* \) & **SEED** with \(w_2^{(0)} \) initial guess
- **ITERATE** using fixed point iteration
 \[
 w_2^{(n+1)} = F_m \left(w_2^{(n)} \right) = w_2^{(n)} - (\mathbf{-h})^{m+1} \frac{d^{m+1}w_2}{dt^{m+1}} \bigg|_{(w_1^*, w_2^{(n)})}
 \]
- **STOP** when converged to \(w_2 = w_2^{(#)} \) converged \(w_2 \)
- **SET** \(w_2^{(#)} \approx w_2^* \approx H(w_1^*) \) approximate slow manifold

Does the iteration converge to \(w_2^* \)? attractivity
The Jacobian $\frac{\partial F_m}{\partial w_2}$

Calculate, to leading order in ε,

$$\left. \frac{\partial F_m}{\partial w_2} \right|_{w^*} = I - C \left(I - e^{\frac{h}{\varepsilon} \frac{\partial r_2}{\partial x_2}} \right)^{m+1} C^{-1} P^{-1}$$
The Jacobian $\frac{\partial F_m}{\partial w_2}$

- Calculate, to leading order in ϵ,

$$\left. \frac{\partial F_m}{\partial w_2} \right|_{w^*} = I - C \left(I - e^{\frac{\hbar}{\epsilon} \left. \frac{\partial r_2}{\partial x_2} \right|_{w^*}} \right)^{m+1} C^{-1} P^{-1}$$

- Here,

- $C = \left. \frac{\partial w_2}{\partial x_2} \right|_{w^*}$ non-degenerate

- $\text{Re} \left(\sigma \left(\left. \frac{\partial r_2}{\partial x_2} \right|_{w^*} \right) \right) \subset \mathbb{R}_-$ not self adjoint, not normal

- P is the product of two non-commuting projections not positive semidefinite, not a projection
The Jacobian $\frac{\partial F_m}{\partial w_2}$

1. Calculate, to leading order in ε,

$$\frac{\partial F_m}{\partial w_2} \bigg|_{w^*} = I - C \left(I - e^{\frac{h}{\varepsilon} \frac{\partial r_2}{\partial x_2}} \bigg|_{w^*} \right)^{m+1} C^{-1} P^{-1}$$

2. Here,
 - $C = \frac{\partial w_2}{\partial x_2} \bigg|_{w^*}$
 - non-degenerate
 - $\text{Re} \left(\sigma \left(\frac{\partial r_2}{\partial x_2} \bigg|_{w^*} \right) \right) \subset \mathbb{R}_-$
 - not self adjoint, not normal
 - P is the product of two non-commuting projections
 - not positive semidefinite, not a projection

$\sigma \left(\frac{\partial F_m}{\partial w_2} \right)$ is unavailable

\[\text{generalized eigenvalue problem}\]
Vertical Fibration ($\mathcal{P} = I$)

Write the normal spectrum of the vector field as

$$\sigma \left(\left. \frac{\partial r_2}{\partial x_2} \right|_{w^*} \right) = \{ \lambda_{\ell} = |\lambda_{\ell}| e^{i\theta_{\ell}} : 1 \leq \ell \leq N_2 \}$$
Write the normal spectrum of the vector field as

$$\sigma \left(\frac{\partial r_2}{\partial x_2} \bigg|_{w^*} \right) = \{ \lambda_\ell = |\lambda_\ell|e^{i\theta_\ell} : 1 \leq \ell \leq N_2 \}$$

Calculate, to leading order in ε,

$$\sigma \left(\frac{\partial F_m}{\partial w_2} \bigg|_{w^*} \right) = \left\{ \mu_\ell = 1 - \left(1 - e^{h\lambda_\ell/\varepsilon} \right)^{m+1} : 1 \leq \ell \leq N_2 \right\}$$
Vertical Fibration \((\mathcal{P} = I)\)

- Write the **normal** spectrum of the vector field as

 \[
 \sigma \left(\left. \frac{\partial r_2}{\partial x_2} \right|_{w^*} \right) = \{ \lambda_\ell = |\lambda_\ell|e^{i\theta_\ell} : 1 \leq \ell \leq N_2 \}
 \]

- Calculate, to leading order in \(\varepsilon\),

 \[
 \sigma \left(\left. \frac{\partial F_m}{\partial w_2} \right|_{w^*} \right) = \left\{ \mu_\ell = 1 - \left(1 - e^{h|\lambda_\ell|/\varepsilon} \right)^{m+1} : 1 \leq \ell \leq N_2 \right\}
 \]

- If **all** \(\lambda_\ell \in \mathbb{R}\), the fixed point is **unconditionally stable**,

 \[
 \mu_\ell = 1 - \left(1 - e^{-h|\lambda_\ell|/\varepsilon} \right)^{m+1} < 1, \quad \text{for all } h > 0
 \]

 Is the fixed point also stable if \(\lambda_\ell \in \mathbb{C} - \mathbb{R}\) **for some** \(\ell\)?
Complex Eigenvalues

\[\mu \sim 1 - (-\lambda h/\varepsilon)^{m+1} \sim 1 - (|\lambda| h/\varepsilon)^{m+1} e^{i(m+1)(\theta - \pi)}, \quad h \downarrow 0 \]
Complex Eigenvalues

\[\mu \sim 1 - (-\lambda h/\varepsilon)^{m+1} \sim 1 - (|\lambda| h/\varepsilon)^{m+1} e^{i(m+1)(\theta - \pi)}, \quad h \downarrow 0 \]
Complex Eigenvalues

\[\mu \sim 1 - (-\lambda h/\varepsilon)^{m+1} \sim 1 - (|\lambda| h/\varepsilon)^{m+1} e^{i(m+1)(\theta-\pi)}, \quad h \downarrow 0 \]

Complex eigenvalues may cause divergence
h versus θ

Stability

Instability
Geometric Configuration
Geometric Configuration

\[w_1 \]

\[w_2 \]

\[w_1^* \]
Geometric Configuration
Geometric Configuration
Geometric Configuration
Geometric Configuration
Geometric Configuration

The relative orientation of the slow manifold and the fast fibers affects algorithm convergence.
Outline

setting of the problem

the zero-derivative principle

the constrained runs scheme

summary
Summary

- $(m + 1)\text{st derivative condition} \rightarrow \mathcal{O}(\varepsilon^m) \text{ approximation}$

- functional iteration solver

<table>
<thead>
<tr>
<th>vertical fibration</th>
<th>non-vertical fibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = 0$</td>
<td>$m \geq 1$</td>
</tr>
<tr>
<td>$\mathbb{R} \rightarrow \text{stable}$</td>
<td>$\mathbb{R} \rightarrow \text{stable}$</td>
</tr>
<tr>
<td>$\mathbb{C} \rightarrow \text{stable}$</td>
<td>$\mathbb{C} \rightarrow \text{unstable}$</td>
</tr>
<tr>
<td>$\mathbb{R} \rightarrow \text{unstable}$</td>
<td>$\mathbb{R} \rightarrow \text{unstable}$</td>
</tr>
<tr>
<td>$\mathbb{C} \rightarrow \text{unstable}$</td>
<td>$\mathbb{C} \rightarrow \text{unstable}$</td>
</tr>
</tbody>
</table>

- stabilization possible
 - Krylov subspace methods
 - implicit functional iteration
 - more intelligent resetting $w_1 = w_1^*$