Analysis of the Constrained Runs Algorithm(s)

Antonios Zagaris

zagaris@cwi.nl

UvA

CWI

KdV Institute for Mathematics | Modelling, Analysis & Simulation

Amsterdam, The Netherlands

Jointly with C. W. Gear[†], T. J. Kaper[‡], I. G. Kevrekidis[†] Funded by NWO

†: Princeton University, USA

‡: Boston University, USA

setting of the problem

the zero-derivative principle

the constrained runs scheme

setting of the problem

the zero-derivative principle

the constrained runs scheme

Micro-to-Macroscale Reduction

All kinds of macroscopic information

Micro-to-Macroscale Reduction

Issues

- Full-scale simulations prohibitive
- Macroscopic model unavailable

Micro-to-Macroscale Reduction

All kinds of macroscopic information

Issues

- Full-scale simulations prohibitive
- Macroscopic model unavailable
- Projective integration schemes

Resolution

Micro-simulations +Time extrapolation

Micro-to-Macro Dynamics

Micro-to-Macro Dynamics

Micro-to-Macro Dynamics

The lifting step is a one-to-many map

Reduction of Multiscale Dynamics

Lifting Scheme

Lifting Scheme

2-step Iterative Lifting

- Integrate until relaxation surface is reached
- Reset $w_1 = w_1^*$

the zero-derivative principle

the constrained runs scheme

The Zero-derivative Principle

• Fix
$$w_1 = w_1^*$$

- **•** Choose $m \in \{0, 1, ...\}$
- Approximate $H(w_1^*)$ by w_2^* obtained via

$$\frac{\mathrm{d}^{m+1}w_2}{\mathrm{d}t^{m+1}}\Big|_{(w_1^*,w_2^*)} = 0 \qquad \text{zero-derivative principle}$$

The Zero-derivative Principle

• Fix
$$w_1 = w_1^*$$

- **•** Choose $m \in \{0, 1, ...\}$
- Approximate $H(w_1^*)$ by w_2^* obtained via

$$\frac{\mathrm{d}^{\mathrm{m}+1}\mathrm{w}_2}{\mathrm{d}\mathrm{t}^{\mathrm{m}+1}}\Big|_{(\mathrm{w}_1^*,\mathrm{w}_2^*)} = 0$$

zero-derivative principle

How close is w_2^* to $H(w_1^*)$?

proximity

Singular Perturbation Setting

Original System

 $w'_1 = g_1(w)$ $w'_2 = g_2(w)$

Singular Perturbation Setting

Singular Perturbation Setting

 $\operatorname{Re}\left(\sigma\left(\partial \mathbf{r}_{2}/\partial \mathbf{x}_{2}\right)|_{\mathrm{S}}\right) \subset \mathbb{R}_{-}$

normal hyperbolicity

Proximity Results

Theorem (GKKZ 2005). Let $m \in \{0, 1, \ldots\}$ and assume that

 $\det \left(\frac{\partial w_2}{\partial x_2}\right) \neq 0$ $\det \left(\frac{\partial g_2}{\partial w_2}\right) \neq 0$

inclusion of fast directions

hyperbolicity in $\mathrm{w}_2\text{-direction}$

in a neighborhood of the manifold. Then, the condition

$$\frac{\mathrm{d}^{\mathrm{m}+1}w_2}{\mathrm{d}^{\mathrm{m}+1}}\Big|_{(w_1^*,w_2)} = 0$$

has an isolated solution w_2^* asymptotically close to $H(w_1^*)$,

$$\mathbf{w}_2^* - \mathbf{H}(\mathbf{w}_1^*) = \mathcal{O}(\varepsilon^{m+1}), \qquad \varepsilon \downarrow 0.$$

the zero-derivative principle

the constrained runs scheme

Constrained Runs Algorithms

● SET $w_2^{(\#)} \approx w_2^* \approx H(w_1^*)$ approximate slow manifold

Constrained Runs Algorithms

Does the iteration converge to w_2^* ?

attractivity

The Jacobian $\partial F_m / \partial w_2$

Solution Calculate, to leading order in ε ,

$$\frac{\partial \mathbf{F}_{\mathbf{m}}}{\partial \mathbf{w}_{2}}\Big|_{\mathbf{w}^{*}} = \mathbf{I} - \mathbf{C} \left(\mathbf{I} - \mathbf{e}^{\frac{\mathbf{h}}{\varepsilon} \frac{\partial \mathbf{r}_{2}}{\partial \mathbf{x}_{2}}}\Big|_{\mathbf{w}^{*}}\right)^{\mathbf{m}+1} \mathbf{C}^{-1} \mathbf{P}^{-1}$$

The Jacobian $\partial F_m / \partial w_2$

• Calculate, to leading order in ε ,

$$\frac{\partial \mathbf{F}_{\mathbf{m}}}{\partial \mathbf{w}_{2}}\Big|_{\mathbf{w}^{*}} = \mathbf{I} - \mathbf{C} \left(\mathbf{I} - \mathbf{e}^{\frac{\mathbf{h}}{\varepsilon} \frac{\partial \mathbf{r}_{2}}{\partial \mathbf{x}_{2}}}\Big|_{\mathbf{w}^{*}}\right)^{\mathbf{m}+1} \mathbf{C}^{-1} \mathbf{P}^{-1}$$

Jere,

•
$$C = \frac{\partial w_2}{\partial x_2} \Big|_{w^*}$$

• $\operatorname{Re}\left(\sigma\left(\frac{\partial r_2}{\partial x_2}\Big|_{w^*}\right)\right) \subset \mathbb{R}$

non-degenerate

not self adjoint, not normal

not positive semidefinite, not a projection

The Jacobian $\partial F_m / \partial w_2$

• Calculate, to leading order in ε ,

$$\frac{\partial \mathbf{F}_{\mathbf{m}}}{\partial \mathbf{w}_{2}}\Big|_{\mathbf{w}^{*}} = \mathbf{I} - \mathbf{C} \left(\mathbf{I} - \mathbf{e}^{\frac{\mathbf{h}}{\varepsilon} \frac{\partial \mathbf{r}_{2}}{\partial \mathbf{x}_{2}}}\Big|_{\mathbf{w}^{*}}\right)^{\mathbf{m}+1} \mathbf{C}^{-1} \mathbf{P}^{-1}$$

Jere,

•
$$C = \frac{\partial w_2}{\partial x_2} \Big|_{w^*}$$

• $\operatorname{Re}\left(\sigma\left(\frac{\partial r_2}{\partial x_2}\Big|_{w^*}\right)\right) \subset \mathbb{R}_-$

non-degenerate

not self adjoint, not normal

not positive semidefinite, not a projection

 $\sigma \left(\partial F_m / \partial w_2 \right)$ is unavailable

generalized eigenvalue problem

Vertical Fibration (P = I)

Write the normal spectrum of the vector field as

$$\sigma\left(\left.\frac{\partial \mathbf{r}_2}{\partial \mathbf{x}_2}\right|_{w^*}\right) = \{\lambda_\ell = |\lambda_\ell| e^{i\theta_\ell} : 1 \le \ell \le N_2\}$$

Vertical Fibration (P = I)

Write the normal spectrum of the vector field as

$$\sigma\left(\left.\frac{\partial \mathbf{r}_2}{\partial \mathbf{x}_2}\right|_{w^*}\right) = \{\lambda_\ell = |\lambda_\ell| e^{i\theta_\ell} : 1 \le \ell \le N_2\}$$

• Calculate, to leading order in ε ,

$$\sigma\left(\left.\frac{\partial F_{m}}{\partial w_{2}}\right|_{w^{*}}\right) = \left\{\mu_{\ell} = 1 - \left(1 - e^{h\lambda_{\ell}/\varepsilon}\right)^{m+1} : 1 \le \ell \le N_{2}\right\}$$

Vertical Fibration (P = I)

Write the normal spectrum of the vector field as

$$\sigma\left(\left.\frac{\partial \mathbf{r}_2}{\partial \mathbf{x}_2}\right|_{w^*}\right) = \{\lambda_\ell = |\lambda_\ell| e^{i\theta_\ell} : 1 \le \ell \le N_2\}$$

Calculate, to leading order in ε ,

$$\sigma\left(\left.\frac{\partial F_{m}}{\partial w_{2}}\right|_{w^{*}}\right) = \left\{\mu_{\ell} = 1 - \left(1 - e^{h\lambda_{\ell}/\varepsilon}\right)^{m+1} : 1 \le \ell \le N_{2}\right\}$$

■ If all $\lambda_{\ell} \in \mathbb{R}$, the fixed point is unconditionally stable,

$$\mu_{\ell} = 1 - \left(1 - e^{-h|\lambda_{\ell}|/\varepsilon}\right)^{m+1} < 1, \text{ for all } h > 0$$

Is the fixed point also stable if $\lambda_{\ell} \in \mathbb{C} - \mathbb{R}$ for some ℓ ?

Complex Eigenvalues

$$\mu \sim 1 - (-\lambda h/\varepsilon)^{m+1} \sim 1 - (|\lambda|h/\varepsilon)^{m+1} e^{i(m+1)(\theta - \pi)}, \quad h \downarrow 0$$

Complex Eigenvalues

Complex Eigenvalues

Complex eigenvalues may cause divergence

h versus θ

3π/2

 W_2

The relative orientation of the slow manifold and the fast fibers affects algorithm convergence

the zero-derivative principle

the constrained runs scheme

Summary

● (m+1)-st derivative condition $\rightarrow \mathcal{O}(\epsilon^m)$ approximation

functional iteration solver

vertical fibration		non-vertical fibration	
m = 0	$m \ge 1$	m = 0	$m \ge 1$
$\mathbb{R} ightarrow$ stable	$\mathbb{R} o$ stable	$\mathbb{R} ightarrow$ unstable	$\mathbb{R} ightarrow$ unstable
$\mathbb{C} ightarrow$ stable	$\mathbb{C} ightarrow$ unstable	$\mathbb{C} ightarrow$ unstable	$\mathbb{C} ightarrow$ unstable

stabilization possible

- Krylov subspace methods
- implicit functional iteration
- more intelligent resetting $w_1 = w_1^*$