Analysis of the Constrained Runs Algorithm(s)

Antonios Zagaris

zagaris@cwi.nl

Jointly with C. W. Gear ${ }^{\dagger}$, T. J. Kaper ${ }^{\ddagger}$, I. G. Kevrekidis ${ }^{\dagger} \quad$ Funded by NWO
\dagger : Princeton University, USA
\ddagger : Boston University, USA

Outline

- setting of the problem
- the zero-derivative principle
- the constrained runs scheme
- summary

Outline

- setting of the problem
- the zero-derivative principle
- the constrained runs scheme
- summary

Micro-to-Macroscale Reduction

Available

A $\left\{\frac{\text { microscopic }}{\text { mesoscopic }}\right\}\left\{\begin{array}{c}\frac{\text { analytic }}{\text { computer }}\end{array}\right\}$ model
Desired
All kinds of macroscopic information

Micro-to-Macroscale Reduction

Available

Desired

Issues

A $\left\{\frac{\text { microscopic }}{\text { mesoscopic }}\right\}\left\{\begin{array}{c}\frac{\text { analytic }}{\text { computer }}\end{array}\right\}$ model
All kinds of macroscopic information

- Full-scale simulations prohibitive
- Macroscopic model unavailable

Micro-to-Macroscale Reduction

Available

Issues

- Projective integration schemes

Resolution
All kinds of macroscopic information

- Full-scale simulations prohibitive
- Macroscopic model unavailable

Micro-simulations

A $\left\{\frac{\text { microscopic }}{\text { mesoscopic }}\right\}\left\{\begin{array}{c}\frac{\text { analytic }}{\text { computer }}\end{array}\right\}$ model

Time extrapolation

Micro-to-Macro Dynamics

Microscopic simulations

Micro-to-Macro Dynamics

Microscopic simulations \Rightarrow Macroscopic information

Micro-to-Macro Dynamics

Microscopic simulations

Macroscopic information

The lifting step is a one-to-many map

Reduction of Multiscale Dynamics

$$
\mathrm{w}_{1}=\mathrm{w}_{1}(\mathrm{t})
$$

macroscopic variables (lower moments)

$$
\mathrm{w}_{2}=\mathrm{w}_{2}(\mathrm{t})
$$

slaved variables (higher moments)

slaved dynamics

$$
\mathrm{w}_{2}=\mathrm{H}\left(\mathrm{w}_{1}\right)
$$

reduced dynamics

$$
\mathrm{w}_{1}^{\prime}=\mathrm{g}_{1}\left(\mathrm{w}_{1}, \mathrm{H}\left(\mathrm{w}_{1}\right)\right)
$$

Lifting Scheme

Lifting Scheme

2-step Iterative Lifting

- Integrate until relaxation surface is reached
- Reset $\mathrm{w}_{1}=\mathrm{w}_{1}^{*}$

Outline

- setting of the problem

- the zero-derivative principle
- the constrained runs scheme
- summary

The Zero-derivative Principle

$$
\left.\begin{aligned}
& \mathrm{w}_{1}^{\prime}=\mathrm{g}_{1}(\mathrm{w}) \\
& \mathrm{w}_{2}^{\prime}=\mathrm{g}_{2}(\mathrm{w})
\end{aligned} \right\rvert\, \text { where } \mathrm{w}_{1}\left\{\begin{array}{c}
\text { describe the macro-dynamics } \\
\text { parameterize the manifold }
\end{array}\right.
$$

- $\operatorname{Fix} \mathrm{w}_{1}=\mathrm{w}_{1}^{*}$
- Choose m $\in\{0,1, \ldots\}$
- Approximate $\mathrm{H}\left(\mathrm{w}_{1}^{*}\right)$ by w_{2}^{*} obtained via

$$
\left.\frac{\mathrm{d}^{\mathrm{m}+1} \mathrm{w}_{2}}{\mathrm{dt}^{\mathrm{m}+1}}\right|_{\left(\mathrm{w}_{1}^{*}, \mathrm{w}_{2}^{*}\right)}=0
$$

The Zero-derivative Principle

$$
\left.\begin{aligned}
& \mathrm{w}_{1}^{\prime}=\mathrm{g}_{1}(\mathrm{w}) \\
& \mathrm{w}_{2}^{\prime}=\mathrm{g}_{2}(\mathrm{w})
\end{aligned} \right\rvert\, \text { where } \mathrm{w}_{1}\left\{\begin{array}{c}
\text { describe the macro-dynamics } \\
\text { parameterize the manifold }
\end{array}\right.
$$

- $\operatorname{Fix} \mathrm{w}_{1}=\mathrm{w}_{1}^{*}$
- Choose m $\in\{0,1, \ldots\}$
- Approximate $\mathrm{H}\left(\mathrm{w}_{1}^{*}\right)$ by w_{2}^{*} obtained via

$$
\left.\frac{\mathrm{d}^{\mathrm{m}+1} \mathrm{w}_{2}}{\mathrm{dt}^{\mathrm{m}+1}}\right|_{\left(\mathrm{w}_{1}^{*}, \mathrm{w}_{2}^{*}\right)}=0
$$

Singular Perturbation Setting

Original System
$\mathrm{w}_{1}^{\prime}=\mathrm{g}_{1}(\mathrm{w})$
$\mathrm{w}_{2}^{\prime}=\mathrm{g}_{2}(\mathrm{w})$

Singular Perturbation Setting

Original System	$\xrightarrow{\mathrm{w} \rightarrow \mathrm{x}}$	Slow-Fast System
$\mathrm{w}_{1}^{\prime}=\mathrm{g}_{1}(\mathrm{w})$		$\mathrm{x}_{1}^{\prime}=\mathrm{r}_{1}(\mathrm{x}, \varepsilon)$
$\mathrm{w}_{2}^{\prime}=\mathrm{g}_{2}(\mathrm{w})$		$\varepsilon \mathrm{x}_{2}^{\prime}=\mathrm{r}_{2}(\mathrm{x}, \varepsilon)$

Singular Perturbation Setting

$\left.$| $\mathrm{w}_{1}^{\prime}=\mathrm{g}_{1}(\mathrm{w})$
 $\mathrm{w}_{2}^{\prime}=\mathrm{g}_{2}(\mathrm{w})$ |
| :--- |
| $\underset{\mathrm{w} \leftarrow \mathrm{x}}{\text { Original System }}$ |$\underset{\substack{\mathrm{x}}}{\stackrel{\mathrm{x} \rightarrow \mathrm{x}}{ }} \right\rvert\,$| Slow-Fast System |
| ---: |
| $\varepsilon \mathrm{x}_{2}^{\prime}=\mathrm{r}_{1}(\mathrm{x}, \varepsilon)$ |
| $=\mathrm{r}_{2}(\mathrm{x}, \varepsilon)$ |

$$
\operatorname{Re}\left(\left.\sigma\left(\partial \mathrm{r}_{2} / \partial \mathrm{x}_{2}\right)\right|_{\mathrm{S}}\right) \subset \mathbb{R}_{-}
$$

Proximity Results

Theorem (GKKZ 2005). Let $\mathrm{m} \in\{0,1, \ldots\}$ and assume that

$$
\begin{array}{r}
\operatorname{det}\left(\partial \mathrm{w}_{2} / \partial \mathrm{x}_{2}\right) \neq 0 \\
\operatorname{det}\left(\partial \mathrm{~g}_{2} / \partial \mathrm{w}_{2}\right) \neq 0
\end{array}
$$

in a neighborhood of the manifold. Then, the condition

$$
\left.\frac{\mathrm{d}^{\mathrm{m}+1} \mathrm{w}_{2}}{\mathrm{dt}^{\mathrm{m}+1}}\right|_{\left(\mathrm{w}_{1}^{*}, \mathrm{w}_{2}\right)}=0
$$

has an isolated solution w_{2}^{*} asymptotically close to $\mathrm{H}\left(\mathrm{w}_{1}^{*}\right)$,

$$
\mathrm{w}_{2}^{*}-\mathrm{H}\left(\mathrm{w}_{1}^{*}\right)=\mathcal{O}\left(\varepsilon^{\mathrm{m}+1}\right), \quad \varepsilon \downarrow 0 .
$$

Outline

- setting of the problem

- the zero-derivative principle

- the constrained runs scheme
- summary

Constrained Runs Algorithms

- CHOOSE $m \in\{0,1, \ldots\}$
order of the method
- FIX $\mathrm{w}_{1}=\mathrm{w}_{1}^{*} \&$ SEED with $\mathrm{w}_{2}^{(0)}$ initial guess
- ITERATE using
$\mathrm{w}_{2}^{(\mathrm{n}+1)}=\mathrm{F}_{\mathrm{m}}\left(\mathrm{w}_{2}^{(\mathrm{n})}\right)=\mathrm{w}_{2}^{(\mathrm{n})}-\left.(-\mathrm{h})^{\mathrm{m}+1} \frac{\mathrm{~d}^{\mathrm{m}+1} \mathrm{w}_{2}}{\mathrm{dt}^{\mathrm{m}+1}}\right|_{\left(\mathrm{w}_{1}^{*}, \mathrm{w}_{2}^{(\mathrm{n})}\right)}$
- STOP when converged to $\mathrm{w}_{2}=\mathrm{w}_{2}^{(\#)}$
converged w_{2}
- $\operatorname{SET~}_{2}^{(\#)} \approx \mathrm{w}_{2}^{*} \approx \mathrm{H}\left(\mathrm{w}_{1}^{*}\right)$
approximate slow manifold

Constrained Runs Algorithms

- CHOOSE $m \in\{0,1, \ldots\}$
order of the method
- FIX $\mathrm{w}_{1}=\mathrm{w}_{1}^{*} \&$ SEED with $\mathrm{w}_{2}^{(0)}$
initial guess
- ITERATE using
$\mathrm{w}_{2}^{(\mathrm{n}+1)}=\mathrm{F}_{\mathrm{m}}\left(\mathrm{w}_{2}^{(\mathrm{n})}\right)=\mathrm{w}_{2}^{(\mathrm{n})}-\left.(-\mathrm{h})^{\mathrm{m}+1} \frac{\mathrm{~d}^{\mathrm{m}+1} \mathrm{w}_{2}}{\mathrm{dt}^{\mathrm{m}+1}}\right|_{\left(\mathrm{w}_{1}^{*}, \mathrm{w}_{2}^{(\mathrm{n})}\right)}$
- STOP when converged to $\mathrm{w}_{2}=\mathrm{w}_{2}^{(\#)}$ converged w_{2}
- $\operatorname{SET~}_{2}^{(\#)} \approx \mathrm{w}_{2}^{*} \approx \mathrm{H}\left(\mathrm{w}_{1}^{*}\right)$
approximate slow manifold

Does the iteration converge to w_{2}^{*} ?

The Jacobian $\partial \mathrm{F}_{\mathrm{m}} / \partial \mathrm{w}_{2}$

- Calculate, to leading order in ε,

$$
\left.\frac{\partial \mathrm{F}_{\mathrm{m}}}{\partial \mathrm{w}_{2}}\right|_{\mathrm{w}^{*}}=\mathrm{I}-\mathrm{C}\left(\mathrm{I}-\mathrm{e}^{\left.\frac{\mathrm{h}}{\varepsilon} \frac{\partial \mathrm{r}_{2}}{\partial x_{2}}\right|_{\mathrm{w}^{*}}}\right)^{\mathrm{m}+1} \mathrm{C}^{-1} \mathrm{P}^{-1}
$$

The Jacobian $\partial \mathrm{F}_{\mathrm{m}} / \partial \mathrm{w}_{2}$

- Calculate, to leading order in ε,

$$
\left.\frac{\partial \mathrm{F}_{\mathrm{m}}}{\partial \mathrm{w}_{2}}\right|_{\mathrm{w}^{*}}=\mathrm{I}-\mathrm{C}\left(\mathrm{I}-\mathrm{e}^{\left.\frac{\mathrm{h}}{\varepsilon} \frac{\partial \mathrm{r}_{2}}{\partial x_{2}}\right|_{\mathrm{w}^{*}}}\right)^{\mathrm{m}+1} \mathrm{C}^{-1} \mathrm{P}^{-1}
$$

- Here,
- $\mathrm{C}=\left.\frac{\partial \mathrm{w}_{2}}{\partial \mathrm{x}_{2}}\right|_{\mathrm{w}^{*}}$
- $\operatorname{Re}\left(\sigma\left(\left.\frac{\partial \mathrm{r}_{2}}{\partial \mathrm{x}_{2}}\right|_{\mathrm{w}^{*}}\right)\right) \subset \mathbb{R}_{-}$
- P is the product of two non-commuting projections
not positive semidefinite, not a projection

The Jacobian $\partial \mathrm{F}_{\mathrm{m}} / \partial \mathrm{w}_{2}$

- Calculate, to leading order in ε,

$$
\left.\frac{\partial \mathrm{F}_{\mathrm{m}}}{\partial \mathrm{w}_{2}}\right|_{\mathrm{w}^{*}}=\mathrm{I}-\mathrm{C}\left(\mathrm{I}-\mathrm{e}^{\left.\frac{\mathrm{h}}{\frac{\partial}{\varepsilon} \frac{\partial r_{2}}{\partial x_{2}}}\right|_{\mathrm{w}^{*}}}\right)^{\mathrm{m}+1} \mathrm{C}^{-1} \mathrm{P}^{-1}
$$

- Here,
- $\mathrm{C}=\left.\frac{\partial \mathrm{w}_{2}}{\partial \mathrm{x}_{2}}\right|_{\mathrm{w}^{*}}$
- $\operatorname{Re}\left(\sigma\left(\left.\frac{\partial \mathrm{r}_{2}}{\partial \mathrm{x}_{2}}\right|_{\mathrm{w}^{*}}\right)\right) \subset \mathbb{R}_{-}$ not self adjoint, not normal
- P is the product of two non-commuting projections
not positive semidefinite, not a projection

Vertical Fibration ($\mathrm{P}=\mathrm{I}$)

- Write the normal spectrum of the vector field as

$$
\sigma\left(\left.\frac{\partial \mathrm{r}_{2}}{\partial \mathrm{x}_{2}}\right|_{\mathrm{w}^{*}}\right)=\left\{\lambda_{\ell}=\left|\lambda_{\ell}\right| \mathrm{e}^{\mathrm{i} \theta_{\ell}}: 1 \leq \ell \leq \mathrm{N}_{2}\right\}
$$

Vertical Fibration ($\mathrm{P}=\mathrm{I}$)

- Write the normal spectrum of the vector field as

$$
\sigma\left(\left.\frac{\partial \mathrm{r}_{2}}{\partial \mathrm{x}_{2}}\right|_{\mathrm{w}^{*}}\right)=\left\{\lambda_{\ell}=\left|\lambda_{\ell}\right| \mathrm{e}^{\mathrm{i} \theta_{\ell}}: 1 \leq \ell \leq \mathrm{N}_{2}\right\}
$$

- Calculate, to leading order in ε,

$$
\sigma\left(\left.\frac{\partial \mathrm{F}_{\mathrm{m}}}{\partial \mathrm{w}_{2}}\right|_{\mathrm{w}^{*}}\right)=\left\{\mu_{\ell}=1-\left(1-\mathrm{e}^{\mathrm{h} \lambda_{\ell} / \varepsilon}\right)^{\mathrm{m}+1}: 1 \leq \ell \leq \mathrm{N}_{2}\right\}
$$

Vertical Fibration ($\mathrm{P}=\mathrm{I}$)

- Write the normal spectrum of the vector field as

$$
\sigma\left(\left.\frac{\partial \mathrm{r}_{2}}{\partial \mathrm{x}_{2}}\right|_{\mathrm{w}^{*}}\right)=\left\{\lambda_{\ell}=\left|\lambda_{\ell}\right| \mathrm{e}^{\mathrm{i} \theta_{\ell}}: 1 \leq \ell \leq \mathrm{N}_{2}\right\}
$$

- Calculate, to leading order in ε,

$$
\sigma\left(\left.\frac{\partial \mathrm{F}_{\mathrm{m}}}{\partial \mathrm{w}_{2}}\right|_{\mathrm{w}^{*}}\right)=\left\{\mu_{\ell}=1-\left(1-\mathrm{e}^{\mathrm{h} \lambda_{\ell} / \varepsilon}\right)^{\mathrm{m}+1}: 1 \leq \ell \leq \mathrm{N}_{2}\right\}
$$

- If all $\lambda_{\ell} \in \mathbb{R}$, the fixed point is unconditionally stable,

$$
\mu_{\ell}=1-\left(1-\mathrm{e}^{-\mathrm{h} \mid \lambda_{\ell} / \varepsilon}\right)^{\mathrm{m}+1}<1, \quad \text { for all } \mathrm{h}>0
$$

Is the fixed point also stable if $\lambda_{\ell} \in \mathbb{C}-\mathbb{R}$ for some ℓ ?

Complex Eigenvalues

$$
\mu \sim 1-(-\lambda \mathrm{h} / \varepsilon)^{\mathrm{m}+1} \sim 1-(|\lambda| \mathrm{h} / \varepsilon)^{\mathrm{m}+1} \mathrm{e}^{\mathrm{i}(\mathrm{~m}+1)(\theta-\pi)}, \quad \mathrm{h} \downarrow 0
$$

Complex Eigenvalues

$$
\mu \sim 1-(-\lambda \mathrm{h} / \varepsilon)^{\mathrm{m}+1} \sim 1-(|\lambda| \mathrm{h} / \varepsilon)^{\mathrm{m}+1} \mathrm{e}^{\mathrm{i}(\mathrm{~m}+1)(\theta-\pi)}, \quad \mathrm{h} \downarrow 0
$$

Complex Eigenvalues

$$
\mu \sim 1-(-\lambda \mathrm{h} / \varepsilon)^{\mathrm{m}+1} \sim 1-(|\lambda| \mathrm{h} / \varepsilon)^{\mathrm{m}+1} \mathrm{e}^{\mathrm{i}(\mathrm{~m}+1)(\theta-\pi)}, \quad \mathrm{h} \downarrow 0
$$

Complex eigenvalues may cause divergence

h versus θ

Instability

Geometric Configuration

The relative orientation of the slow manifold and the fast fibers affects algorithm convergence

Outline

- setting of the problem

- the zero-derivative principle

- the constrained runs scheme
- summary

Summary

- $(\mathrm{m}+1)$-st derivative condition $\rightarrow \mathcal{O}\left(\varepsilon^{\mathrm{m}}\right)$ approximation
- functional iteration solver

vertical fibration		non-vertical fibration	
$\mathrm{m}=0$	$\mathrm{~m} \geq 1$	$\mathrm{~m}=0$	$\mathrm{~m} \geq 1$
$\mathbb{R} \rightarrow$ stable	$\mathbb{R} \rightarrow$ stable	$\mathbb{R} \rightarrow$ unstable	$\mathbb{R} \rightarrow$ unstable
$\mathbb{C} \rightarrow$ stable	$\mathbb{C} \rightarrow$ unstable	$\mathbb{C} \rightarrow$ unstable	$\mathbb{C} \rightarrow$ unstable

- stabilization possible
- Krylov subspace methods
- implicit functional iteration
- more intelligent resetting $w_{1}=w_{1}^{*}$

