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Micro-to-Macroscale Reduction
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Micro-to-Macroscale Reduction

Available A

{

microscopic
mesoscopic

} {

analytic
computer

}

model

Desired All kinds of macroscopic information

Issues
Full-scale simulations prohibitive
Macroscopic model unavailable

Resolution

Projective integration schemes

Micro-simulations
+

Time extrapolation
⇒ Macro-info
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Micro-to-Macro Dynamics
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The lifting step is a one-to-many map
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Reduction of Multiscale Dynamics

w1 = w1(t) macroscopic variables (lower moments)

w2 = w2(t) slaved variables (higher moments)

w
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w  = H (w )

w  = g(w)

slaved dynamics

w2 = H(w1)

∣

∣
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∣
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←−−−−−
reduction−−−−−→
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∣

∣

∣

reduced dynamics

w′1 = g1

(

w1,H(w1)
)
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Lifting Scheme
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Lifting Scheme

*
1w

2w

1w

1w

2-step Iterative Lifting

Integrate until relaxation surface is reached

Reset w1 = w∗1
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The Zero-derivative Principle

w′1 = g1(w)

w′2 = g2(w)

∣

∣

∣

∣

∣

where w1

{

describe the macro-dynamics
parameterize the manifold

Fix w1 = w∗1

Choose m ∈ {0, 1, . . .}

Approximate H(w∗1) by w∗2 obtained via

dm+1w2
dtm+1

∣
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∣

(w∗1,w
∗
2)

= 0 zero-derivative principle
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The Zero-derivative Principle

w′1 = g1(w)

w′2 = g2(w)
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describe the macro-dynamics
parameterize the manifold

Fix w1 = w∗1

Choose m ∈ {0, 1, . . .}

Approximate H(w∗1) by w∗2 obtained via

dm+1w2
dtm+1

∣
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∣

(w∗1,w
∗
2)

= 0 zero-derivative principle

How close is w∗2 to H(w∗1)? proximity
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Singular Perturbation Setting

Original System
w′1 = g1(w)

w′2 = g2(w)
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Slow-Fast System
x′1 = r1(x, ε)

ε x′2 = r2(x, ε)
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Re (σ (∂r2/∂x2)|S) ⊂ R− normal hyperbolicity
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Proximity Results

Theorem (GKKZ 2005). Let m ∈ {0, 1, . . .} and assume that

det (∂w2/∂x2) 6= 0 inclusion of fast directions

det (∂g2/∂w2) 6= 0 hyperbolicity in w2−direction

in a neighborhood of the manifold. Then, the condition

dm+1w2
dtm+1

∣

∣

∣

(w∗1,w2)
= 0

has an isolated solution w∗2 asymptotically close to H(w∗1),

w∗2 − H(w∗1) = O(εm+1), ε ↓ 0.

Mathematics of Model Reduction, Leicester 2007 | August 29, 2007 – p. 10



Outline

setting of the problem

the zero-derivative principle

the constrained runs scheme

summary

Mathematics of Model Reduction, Leicester 2007 | August 29, 2007 – p. 11



Constrained Runs Algorithms

CHOOSE m ∈ {0, 1, . . .} order of the method

FIX w1 = w∗1 & SEED with w
(0)
2 initial guess

ITERATE using fixed point iteration

w
(n+1)
2 = Fm

(

w
(n)
2

)

= w
(n)
2 − (−h)m+1 dm+1w2

dtm+1

∣

∣

∣

(w∗
1,w

(n)
2 )

STOP when converged to w2 = w
(#)
2 converged w2

SET w
(#)
2 ≈ w∗2 ≈ H(w∗1) approximate slow manifold
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1,w

(n)
2 )

STOP when converged to w2 = w
(#)
2 converged w2

SET w
(#)
2 ≈ w∗2 ≈ H(w∗1) approximate slow manifold

Does the iteration converge to w∗2? attractivity
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The Jacobian∂Fm/∂w2

Calculate, to leading order in ε,

∂Fm
∂w2
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w∗

)m+1

C−1 P−1
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w∗

))

⊂ R− not self adjoint, not normal

P is the product of two non-commuting projections
not positive semidefinite, not a projection

σ (∂Fm/∂w2) is unavailable generalized eigenvalue problem
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Vertical Fibration ( P = I)

Write the normal spectrum of the vector field as

σ
(

∂r2
∂x2

∣
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∣

w∗

)

= {λℓ = |λℓ|e
iθℓ : 1 ≤ ℓ ≤ N2}
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)

=

{

µℓ = 1−
(

1− ehλℓ/ε
)m+1

: 1 ≤ ℓ ≤ N2

}

If all λℓ ∈ R, the fixed point is unconditionally stable,

µℓ = 1−
(

1− e−h|λℓ|/ε
)m+1

< 1, for all h > 0

Is the fixed point also stable if λℓ ∈ C− R for some ℓ?
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Complex Eigenvalues

µ ∼ 1− (−λh/ε)m+1 ∼ 1− (|λ|h/ε)m+1ei(m+1)(θ−π), h ↓ 0
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Complex Eigenvalues
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Complex eigenvalues may cause divergence
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h versusθ

Stability
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Geometric Configuration
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Geometric Configuration
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The relative orientation of the slow manifold
and the fast fibers affects algorithm convergence
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Summary

(m + 1)−st derivative condition→ O(εm) approximation

functional iteration solver

vertical fibration non-vertical fibration

m = 0 m ≥ 1 m = 0 m ≥ 1

R→ stable R→ stable R→ unstable R→ unstable
C→ stable C→ unstable C→ unstable C→ unstable

stabilization possible
Krylov subspace methods
implicit functional iteration
more intelligent resetting w1 = w∗1
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