

Elastic maps with applications in bioinformatics

Alexander Gorban University Of Leicester, UK Andrei Zinovyev Institute of Curie, France

- Principal manifolds as surfaces of minimal elastic energy
- Elastic maps: construction and utilization
- Examples of use
- Microarray datasets
- Future development

Mean point

Principal "Object"

Principal Component Analysis

Principal manifold

Probability distribution: idea of self-consistency

Self-organizing maps

Metaphor of elasticity (energy function proposed by Gorban in 1996 at Russian national neuroinformatics workshop "Neuroinformatics and its applications - 1996")

Constructing elastic nets

Definition of elastic energy

Scaling rules

 $\lambda = \lambda_0 s \frac{\frac{2-d}{d}}{\frac{4-d}{d}}$ $\mu = \mu_0 r^{-\frac{d}{d}}$

For uniform d-dimensional net from the condition of constant energy density we obtain:

$$\lambda_1 = \lambda_2 = \ldots = \lambda_s = \lambda(s);$$

$$\mu_1 = \mu_2 = \dots = \mu_r = \mu(r)$$

s is number of edges, *r* is number of ribs in a given volume

Elastic manifolds

Global minimum and softening

Adaptive algorithms

Projection onto the manifold

institut**Curie**

Mapping distortions

Two basic types of distortion:

O 1) Projecting distant points in the close ones (bad resolution)

2) Projecting close points in the distant ones (**bad topology compliance**)

Instability of projection

Best Matching Unit (BMU) for a data point is the closest node of the graph, BMU2 is the second-close node. If BMU and BMU2 are not adjacent on the graph, then the data point is *unstable*.

Gray polygons are the areas of instability. Numbers denote the degree of instability, how many nodes separate BMU from BMU2.

Dealing with missing values in data

Colorings: visualize any function

Density visualization

Various manifold topologies

Example 1: Approximating molecular surface

Approximating by 2D spherical grid

approximating by 2D spherical gri

Approximating by 1D curve

Example 2: Image skeletonization or clustering around curves

Example 3: Medical table

1700 patients with infarctus myocarde

Example 3: Medical table

1700 patients with infarctus myocarde

128 clinical variables

Age

Numberof infarctus in anamnesis

Stenocardia functional class

Example 4: Codon usage in all genes of one genome

Microarray technology and microarray datasets

One spot corresponds to a gene (mRNA concentration)

Table of numbers, characteristic size is 10000 genes x100 samples

Gene space: every point correspond to a gene characterized by its expression in m samples

2006

Bladder cancer dataset (Dataset II), 40 patients

102 healthy tissues (Dataset III)

institut**Curie**

102 healthy tissues (Dataset III)

actin gamma 2

claudin 1

aldolase B

ERBB3

calgranulin B

Implementation of the idea: VidaExpert tool

http://bioinfo.curie.fr/projects/vidaexpert/

elmap C++ package

http://bioinfo.curie.fr/projects/elmap/

ichier Edition Affichage Favoris Outils ?	At 1997
😋 Précédente 🔹 💿 🔹 📓 🏠 🔎 Rechercher 🤺 Favoris 🚱 🔗 - چ 📝 🗉 📮 🎇 🗗 🗸	8
dresse 🕘 http://bioinfo-out.curie.fr/projects/elmap/	V 🌖 OK Liens 3
🔽 🗸 🗸 😯 💽 Rechercher 🔻 🅢 🌑 PageBank 🖾 998 bloquée(s)	ions 🖉
	2
FL astic MAPs	INSTITUT DES
ELASIC MAI 5	ÉTUDES institut Curie
	IHES SCIENTIFIQUES Types and and and
eunap - is a toor tor rast constructing non-linear principal surfaces with different topologies in mundimensional as well as in low-dimensional keywords: principal curve, principal surface, probabilistic, dimensionality reduction, nonlinear manifold, generative topographic mapping	spaces, for discrete sets of weightened points.
Description Principal curves and surfaces are nonlinear generalizations of principal components and subspaces, respectively. They can provide insightful st classical linear methods. They were first defined by Trevor Hastie and Werner Stuetzle as "self-consistent" smooth curves which pass through lata cloud. Good biobliography on the subject is available at http://www.inc.umontreal.ca/-keg/research/pcurves/ .	ummary of high-dimensional data not typically attainable by the "middle" of a d-dimensional probability distribution or
Description Principal curves and surfaces are nonlinear generalizations of principal components and subspaces, respectively. They can provide insightful st classical linear methods. They were first defined by Trevor Hastie and Werner Stuetzle as "self-consistent" smooth curves which pass through data cloud. Good biobliography on the subject is available at http://www.iro.umontreal.ca/-kegl/research/pcurves/ . We present a novel algorithm to construct principal surfaces using methaphor of elasticity. The picture on the right symbolizes the idea behint the algorithm. The small points are datapoints, the big ones are a grid approximation of a principal curve. We define an elastic energy of such system and propose an effective algorithm to minimize it. The methodology of principal curves and surfaces construction that we propose has several advantages: 1) it is "natural"; 2) it is fast; 3) it is flexible and allows many variations and adaptations; 4) it allows easily constructing surfaces with any dimension and topology.	ummary of high-dimensional data not typically attainable by the "middle" of a d-dimensional probability distribution or
Description Principal curves and surfaces are nonlinear generalizations of principal components and subspaces, respectively. They can provide insightful st classical linear methods. They were first defined by Trevor Hastie and Werner Stuetzle as "self-consistent" smooth curves which pass through data cloud. Good biobliography on the subject is available at http://www.iro.umontreal.ca/-kegl/research/pcurves/ . We present a novel algorithm to construct principal surfaces using methaphor of elasticity. The picture on the right symbolizes the idea behind the algorithm. The small points are datapoints, the big ones are a grid approximation of a principal curve. We define an elastic energy of such system and propose an effective algorithm to minimize it. The methodology of principal curves and surfaces construction that we propose has several advantages: 1) it is "natural"; 2) it is fast; 3) it is flexible and allows many variations and adaptations; 4) it allows easily constructing surfaces with any dimension and topology. Examples	ummary of high-dimensional data not typically attainable by the "middle" of a d-dimensional probability distribution or

VIMIDA: Java-applet for multidimensional data visualization

Part of PLATAN : Microarray data analysis pipeline developed In Institut Curie

http://bioinfo.curie.fr/projects/vimida/ (

institut**Curie**

Anonce

Topological grammars: principal trees, cubic complexes, etc. in the talk of Professor Gorban (26 August)

Branching principal components for bioinformatics data: alternative for hierarchical clustering?

Papers

Prof. Misha Gromov (France)

Dr. Alexei Rossiev (Moscow)

Dr. Alexander Pitenko (Krasnoyarsk, Russia)

Neil Sumner (Leicester, UK)

Laboratory of neuroinformatics of Institute of computational Modeling, Russian Academy of Science

