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Introduction

n Task: Automatic model reduction for chemical kinetics modeled by
ODEs

n Most common idea in practical model reduction: ILDM
u Fix differential variables
u Locally determine fast processes by eigenvalues of Jacobian
u Compute algebraic variables by relaxation of fast processes

n Problems with ILDM:
u Fixed dimension necessary for tabulation, but separation of fast

and slow processes depends on boundary conditions
u ILDM points in lower-temperature domain demand high

dimensions
u only local information is exploited

n Lebiedz presented novel approach to model reduction in 2004
(reduction to one dimension)
u Compute trajectories with minimal entropy production subject to

one �xed initial value
u Here: Generalize this approach for usage in multiple dimensions
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General Problem

General trajectory-based optimization approach for model reduction
in chemical kinetics:

min
ck

Z T

0
�( c(t)) d t

subject to
dck

dt
= f k (c); k = 1 ; :::; m

ck (0) = c0
k ; k 2 I �xed

jck (T) � ceq
k j � "; k 2 I �xed

and subject to conservation relations.

Solution:
This problem is a variational boundary value problem - can be solved
ef�ciently using MUSCOD-II (Research group Bock)
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Why this approach?

n Trajectories contain global information about mechanism

n Optimization approach for “guaranteed” solvability

n Natural realization of progress variables as initial values of
trajectories

n Automatic approach
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Continution strategy

n “Reduced trajectories” can be ef�ciently calculated by ini tial value
embedding

n low computational demands for tabulation
n ef�cient initialization for in-situ computation of reduce d descriptions
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Generality of approach

Generality of approach allows for adaptation of
n optimization criterion
n integration horizon
n “initial” time (T0 at which progress variables are set)

Here: Adaptation of optimization criterion.

min
ck

Z T

0
�( c(t)) dt

subject to
dck

dt
= f k (c); k = 1 ; :::; m

ck (T0) = c0
k ; k 2 I �xed

jck (T) � ceq
k j � "; k 2 I �xed
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Relaxation Criterion

n � should describe extent of relaxation of “chemical forces” along
trajectories:
u should be minimal along a trajectory as close to equilibrium as

allowed by the initial constraints
u should consist of easily accessible data (e.g. reaction rates,

chemical source terms and their derivatives)
u should be continuously differentiable along reaction trajectories.

Desirable, but not necessary: Consistence property (Invar iance)
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Entropy production rate

Lebiedz [2004]: Minimize entropy production rate along trajectory

diSk

dt
= R

�
(Rk f � Rk r ) ln

�
Rk f

Rk r

��
� 0:

for single reaction step k.

Reduction criterion:

�( c(t)) =
nX

k=1

diSk

dt

Note: For isothermal systems (negative) “Gibbs free energy” is the
Lyapunov function. However, as

dG
dt

= � T
diS
dt

;

minimization of (negative) Gibbs free energy production =
minimization of entropy production.
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Relate curvature to relaxation

n Physical principle “Force = Curvature”

Curvature of trajectories?

•c(t) =
d2c
dt2 =

d_c
dt

=
d_c
dc

dc
dt

= J (_c(t)) � _c(t) = J (f (c(t))) � f (c(t)) ;

J (f ) ... Jacobian of RHS of ODE _c(t) = f (c(t)) .

Curvature of trajectory: kJ (f )f k

n Becomes zero in thermodynamic equilibrium
n Can also be related to stiffness of solutions of ODE
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Curvature based Concepts

Minimize curvature of trajectories, i.e.

�( c(t)) = kJ (c)f (c)k

Re�ects the physical principle ”Force = Curvature” (in a sui table
geometry).

Suitable geometry in phase space? Replace euclidian norm

kxk2
2 = xT x by kxk2

A = xT Ax

Norm induced by scalar product - pos. def. symm. bilinear form. Find
A, such that scalar product < x; y > := xT Ay is positive de�nite.
Choose A diagonal with elements

ajj =
nX

k=1

� kj
di Sk

dt

with entropy production rate d i Sk
dt for reaction k.
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Example Mechanism: Hydrogen Combustion

H2
k1 ;k � 1


 2H ; k1 = 2 :0; k� 1 = 216:0

O2
k2 ;k � 2


 2O ; k2 = 1 :0; k� 2 = 337:5

H2O
k3 ;k � 3


 H + OH ; k3 = 1 :0; k� 3 = 1400:0

H2 + O
k4 ;k � 4


 H + OH ; k4 = 1000:0; k� 4 = 10800:0

O2 + H
k5 ;k � 5


 O + OH ; k5 = 1000:0; k� 5 = 33750:0

H2 + O
k6 ;k � 6


 H2O ; k6 = 100:0; k� 6 = 0 :7714

Together with two conservation relations this six-component
mechanism yields a system with four degrees of freedom.



Introduction

General Approach

Optimization
Criteria

Results
l H2 Mechanism
l Entropy

production
l Curvature

Summary and
Outlook

Mathematics of Model Reduction Workshop, University of Leicester, August 28-30, 2007 - slide 13 of 23

Minimum Entropy-Production Trajectories

Trajectory-based optimization approach for minimal entropy
production:

min
ck

Z T

0

nX

k=1

diSk

dt
dt

subject to
dck

dt
= f k (c); k = 1 ; :::; m

ck (0) = c0
k ; k 2 I �xed

T suf�ciently large

and subject to conservation relations.
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Entropy production rate
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Arclength Parametrization

Resulting MEPTs form smooth manifold, but relax to 2D manifold �rst.
Possible explanation: time-integral in objective function.
More natural formulation: Path integral from initial value to equilibrium

Z l (ceq )

l (0)

nX

j =1

di Sj

dt
dl(t);

where l(t) is the length of the curve c(t) at time t, given by

l(t) =
Z t

0
jj _c(� )jjd�: ) dl(t) = jj _c(t)jjdt:

As _c(t) = f (c), modi�ed minimal entropy production trajectories can
also be written as

min
ck (0)

Z T

0

0

@
nX

j =1

di Sj

dt

1

A jj f (c)jjdt
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Minimal Entropy-Production Trajectories

Trajectory-based optimization approach for minimal entropy
production in arclength parametrization:

min
ck

Z T

0

nX

k=1

diSk

dt
kf (c)k dt

subject to
dck

dt
= f k (c); k = 1 ; :::; m

ck (0) = c0
k ; k 2 I �xed

T suf�ciently large

and subject to conservation relations.
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Minimal entropy production trajectories
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Minimally Curved Trajectories

Trajectory-based optimization approach for minimally curved
trajectories:

min
ck

Z T

0
kJ (c)f (c)kA dt =

min
ck

Z T

0
f T J T

0

B
B
B
B
@

P n
j =1 � 1j

d i S1
dt 0 ::: 0

0
. . .

. . .
...

...
. . .

. . .
...

0 ::: 0
P n

j =1 � nj
d i Sn

dt

1

C
C
C
C
A

Jf dt

subject to
dck

dt
= f k (c); k = 1 ; :::; m

ck (0) = c0
k ; k 2 I �xed

T suf�ciently large

and subject to conservation relations.
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Curvature minimization
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Curvature minimization
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Summary and Outlook

Summary:
n Introduced general trajectory-based optimization concept for model

reduction
u arbitrary dimension
u optimization approach for solvability
u approach to automatic model reduction

n Application of trajectory-based optimization concept with novel
curvature-based relaxation criterion shows promising results

Outlook:
n Alternative Relaxation Criteria ?
n Alternative Solution Strategies ?
n More realistic mechanisms ( temperature dependence )
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Thank You!

Thank you very much for your attention!


	Contents
	Contents

	Introduction
	Introduction

	General Approach
	General Problem
	Why this approach?
	Continution strategy
	Generality of approach
	Relaxation Criterion

	Criteria
	Entropy production rate
	Relate curvature to relaxation
	Curvature based Concepts

	Results
	Example Mechanism: Hydrogen Combustion
	Minimum Entropy-Production Trajectories
	Entropy production rate
	Arclength Parametrization
	Minimal Entropy-Production Trajectories
	Minimal entropy production trajectories
	Minimally Curved Trajectories
	Curvature minimization
	Curvature minimization

	Outlook
	Summary and Outlook


