Model reduction in chemical kinetics based on the optimization of trajectories

Mathematics of Model Reduction, University of Leicester, August 28-30, 2007

Volkmar Reinhardt, Miriam Winckler and Dirk Lebiedz*

IWR, University of Heidelberg and ZBSA, University of Freiburg

*dirk.lebiedz@biologie.uni-freiburg.de

Contents

Contents

Introduction

- General Approach
- Optimization Criteria

Results

Summary and Outlook

- Introduction
- General Approach
- Optimization Criteria
- Results
- Summary and Outlook

Introduction

Task: Automatic model reduction for chemical kinetics modeled by ODEs

Introduction

General Approach

Optimization Criteria

Results

Summary and Outlook

- Most common idea in practical model reduction: ILDM
 - Fix differential variables
 - Locally determine fast processes by eigenvalues of Jacobian
 - Compute algebraic variables by relaxation of fast processes

Problems with ILDM:

- Fixed dimension necessary for tabulation, but separation of fast and slow processes depends on boundary conditions
- ILDM points in lower-temperature domain demand high dimensions
- only local information is exploited
- Lebiedz presented novel approach to model reduction in 2004 (reduction to one dimension)
 - Compute trajectories with minimal entropy production subject to one fixed initial value
 - Here: Generalize this approach for usage in multiple dimensions

General Problem

General trajectory-based optimization approach for model reduction in chemical kinetics:

Introduction

General Approach

Problem
Continuation
Relaxation Criterion

Optimization Criteria

Results

Summary and Outlook

$$\begin{split} \min_{c_k} & \int_0^T \Phi(c(t)) \, \mathrm{d}t \\ \text{subject to} & \frac{\mathrm{d}c_k}{\mathrm{d}t} = f_k(c), \qquad k = 1, \dots, m \\ & c_k(0) = c_k^0, \qquad k \in I_{\mathsf{fixed}} \\ & |c_k(T) - c_k^{\mathsf{eq}}| \leq \varepsilon, \qquad k \in I_{\mathsf{fixed}} \end{split}$$

and subject to conservation relations.

Solution:

This problem is a *variational boundary value problem* - can be solved efficiently using MUSCOD-II (Research group Bock)

Why this approach?

Introduction

- General Approach Problem Continuation
- Relaxation
 Criterion

Optimization Criteria

Results

Summary and Outlook

- Trajectories contain global information about mechanism
- Optimization approach for "guaranteed" solvability
- Natural realization of progress variables as initial values of trajectories
- Automatic approach

Continution strategy

- "Reduced trajectories" can be efficiently calculated by initial value embedding
- Iow computational demands for tabulation
- efficient initialization for in-situ computation of reduced descriptions

Introduction

General Approach
Problem
Continuation
Relaxation Criterion

Optimization Criteria

Results

Summary and Outlook

Introduction

Problem

ContinuationRelaxation

Criterion

Optimization

General Approach

Generality of approach

Generality of approach allows for adaptation of

- optimization criterion
- integration horizon
- "initial" time (T_0 at which progress variables are set)

Here: Adaptation of optimization criterion.

Criteriamin
 c_k $\int_0^T \Phi(c(t)) dt$ Resultssubject to $\frac{dc_k}{dt} = f_k(c),$ k = 1, ..., m $c_k(T_0) = c_k^0,$ $k \in I_{\text{fixed}}$ $|c_k(T) - c_k^{\text{eq}}| \le \varepsilon,$ $k \in I_{\text{fixed}}$

Relaxation Criterion

Introduction General Approach Problem Continuation Relaxation Criterion	 trajectories: should be minimal along a trajectory as close to equilibrium as allowed by the initial constraints should consist of easily accessible data (e.g. reaction rates, chemical source terms and their derivatives) should be continuously differentiable along reaction trajectories.
Optimization Criteria Results Summary and Outlook	Desirable, but not necessary: Consistence property (Invariance)

• Φ should describe extent of relaxation of "chemical forces" along

Entropy production rate

Lebiedz [2004]: Minimize entropy production rate along trajectory

Introduction

 $\frac{\mathrm{d}_{\mathrm{i}}S_k}{\mathrm{d}t} = R\left(\left(R_{k\mathrm{f}} - R_{k\mathrm{r}}\right)\ln\left(\frac{R_{k\mathrm{f}}}{R_{k\mathrm{r}}}\right)\right) \ge 0.$

General Approach

Optimization

Criteria

 Entropy production

Results

Summary and Outlook for single reaction step k.

Reduction criterion:

$$\Phi(c(t)) = \sum_{k=1}^{n} \frac{\mathrm{d}_{\mathrm{i}} S_k}{\mathrm{d}t}$$

Note: For isothermal systems (negative) "Gibbs free energy" is the Lyapunov function. However, as

$$\frac{\mathrm{d}G}{\mathrm{d}t} = -T\frac{\mathrm{d}_{\mathrm{i}}S}{\mathrm{d}t},$$

minimization of (negative) Gibbs free energy production = minimization of entropy production.

Relate curvature to relaxation

Physical principle "Force = Curvature"

Curvature of trajectories?

Introduction

General Approach

Optimization Criteria Entropy production Curvature

Results

Summary and Outlook

 $\ddot{c}(t) = \frac{\mathrm{d}^2 c}{\mathrm{d}t^2} = \frac{\mathrm{d}\dot{c}}{\mathrm{d}t} = \frac{\mathrm{d}\dot{c}}{\mathrm{d}c}\frac{\mathrm{d}c}{\mathrm{d}t} = J(\dot{c}(t))\cdot\dot{c}(t) = J(f(c(t)))\cdot f(c(t)),$

J(f) ... Jacobian of RHS of ODE $\dot{c}(t) = f(c(t))$.

Curvature of trajectory: ||J(f)f||

- Becomes zero in thermodynamic equilibrium
- Can also be related to stiffness of solutions of ODE

Curvature based Concepts

Minimize curvature of trajectories, i.e.

Introduction

General Approach

Optimization Criteria • Entropy

production

Curvature

Results

Summary and Outlook

Reflects the physical principle "Force = Curvature" (in a suitable geometry).

 $\Phi(c(t)) = \|J(c)f(c)\|$

Suitable geometry in phase space? Replace euclidian norm

 $||x||_2^2 = x^T x$ by $||x||_A^2 = x^T A x$

Norm induced by scalar product - pos. def. symm. bilinear form. Find A, such that scalar product $\langle x, y \rangle := x^T A y$ is positive definite. Choose A diagonal with elements

$$a_{jj} = \sum_{k=1}^{n} \nu_{kj} \frac{\mathrm{d}_i S_k}{\mathrm{d}t}$$

with entropy production rate $\frac{d_i S_k}{dt}$ for reaction k.

Example Mechanism: Hydrogen Combustion

Introduction	H_2	$\begin{array}{c} k_1, k_{-1} \\ \rightleftharpoons \end{array}$	$2\mathrm{H}$,	$k_1 = 2.0,$	$k_{-1} = 216.0$
General Approach	O_2	$\stackrel{k_2,k_{-2}}{\rightleftharpoons}$	20 ,	$k_2 = 1.0,$	$k_{-2} = 337.5$
Optimization	H_2O	$\stackrel{k_3,k_{-3}}{\rightleftharpoons}$	$\mathrm{H} + \mathrm{OH} ,$	$k_3 = 1.0,$	$k_{-3} = 1400.0$
Criteria	$H_2 + O$	$\stackrel{k_4,k_{-4}}{\rightleftharpoons}$	H + OH ,	$k_4 = 1000.0,$	$k_{-4} = 10800.0$
Results \bullet H ₂ Mechanism	$O_2 + H$	$\stackrel{k_5,k_{-5}}{\rightleftharpoons}$	O + OH ,	$k_5 = 1000.0,$	$k_{-5} = 33750.0$
 Entropy production 	$H_2 + O$	$\stackrel{k_6,k_{-6}}{\rightleftharpoons}$	H_2O ,	$k_6 = 100.0,$	$k_{-6} = 0.7714$
 Curvature 					

Summary and Outlook

Together with two conservation relations this six-component mechanism yields a system with four degrees of freedom.

Minimum Entropy-Production Trajectories

Trajectory-based optimization approach for minimal entropy production:

Introduction

General Approach

Optimization Criteria

Results

 H₂ Mechanism
 Entropy production

Curvature

Summary and Outlook

 $\begin{array}{ll} \min_{c_k} & \int_0^T \sum_{k=1}^n \frac{\mathrm{d}_i S_k}{\mathrm{d}t} \, \mathrm{d}t \\ \text{subject to} & \frac{\mathrm{d}c_k}{\mathrm{d}t} = f_k(c), \qquad k = 1, ..., m \\ & c_k(0) = c_k^0, \qquad k \in I_{\mathsf{fixed}} \\ & T \text{ sufficiently large} \end{array}$

and subject to conservation relations.

Entropy production rate

Arclength Parametrization

Introduction

General Approach

Optimization Criteria

Results • H₂ Mechanism

 Entropy production

Curvature

Summary and Outlook

Resulting MEPTs form smooth manifold, but relax to 2D manifold first. *Possible explanation*: time-integral in objective function. *More natural formulation*: Path integral from initial value to equilibrium

$$\int_{l(0)}^{l(c^{eq})} \sum_{j=1}^{n} \frac{\mathrm{d}_i S_j}{\mathrm{d}t} \mathrm{d}l(t),$$

where l(t) is the length of the curve c(t) at time t, given by

$$l(t) = \int_0^t ||\dot{c}(\tau)| |\mathrm{d}\tau. \Rightarrow \mathrm{d}l(t) = ||\dot{c}(t)||\mathrm{d}t.$$

As $\dot{c}(t) = f(c)$, modified minimal entropy production trajectories can also be written as

$$\min_{c_k(0)} \int_0^T \left(\sum_{j=1}^n \frac{\mathrm{d}_i S_j}{\mathrm{d}t} \right) ||f(c)|| \mathrm{d}t$$

Minimal Entropy-Production Trajectories

Trajectory-based optimization approach for minimal entropy production in arclength parametrization:

Introduction

General Approach

Optimization Criteria

Results

 H₂ Mechanism
 Entropy production

Summary and Outlook

 $\min_{c_k} \qquad \int_0^T \sum_{k=1}^n \frac{\mathrm{d}_i S_k}{\mathrm{d}t} \|f(c)\| \,\mathrm{d}t$ $\max_{c_k} = f_i(c)$

subject to $\frac{\mathrm{d}c_k}{\mathrm{d}t} = f_k(c),$ $c_k(0) = c_k^0,$

k = 1, ..., m

 $k \in I_{\mathsf{fixed}}$

T sufficiently large

and subject to conservation relations.

Minimal entropy production trajectories

Mathematics of Model Reduction Workshop, University of Leicester, August 28-30, 2007

- slide 17 of 23

Minimally Curved Trajectories

Trajectory-based optimization approach for minimally curved trajectories:

Introduction

 $\min_{c_{k}} \int_{0}^{T} \|J(c)f(c)\|_{A} dt = \\
\min_{c_{k}} \int_{0}^{T} f^{T}J^{T} \begin{pmatrix} \sum_{j=1}^{n} \nu_{1j} \frac{d_{i}S_{1}}{dt} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \sum_{j=1}^{n} \nu_{nj} \frac{d_{i}S_{n}}{dt} \end{pmatrix} Jf dt$ **General Approach Optimization** Criteria Results • H₂ Mechanism Entropy production Curvature subject to $\frac{\mathrm{d}c_k}{\mathrm{d}t} = f_k(c), \qquad \qquad k = 1, ..., m$ $c_k(0) = c_k^0, \qquad \qquad k \in I_{\mathsf{fixed}}$ Summary and Outlook T sufficiently large

and subject to conservation relations.

Mathematics of Model Reduction Workshop, University of Leicester, August 28-30, 2007

Curvature minimization

Curvature minimization

Introduction

Optimization

Summary and

Criteria

Results

Outlook

General Approach

Summary and Outlook

Summary:

- Introduced general trajectory-based optimization concept for model reduction
 - arbitrary dimension
 - optimization approach for solvability
 - approach to automatic model reduction
- Application of trajectory-based optimization concept with novel curvature-based relaxation criterion shows promising results

Outlook:

- Alternative Relaxation Criteria ?
- Alternative Solution Strategies ?
- More realistic mechanisms (temperature dependence)

Thanks to

Introduction

General Approach

Optimization Criteria

Results

Summary and Outlook

Thanks

Dirk Lebiedz

Miriam Winckler

- Georg Bock and Research Group
- Moritz Diehl
- Funding: Deutsche
 - Forschungsgemeinschaft
- Alexander Gorban

Thank You!

Introduction

General Approach

Optimization Criteria

Results

Summary and Outlook

Thanks

Thank you very much for your attention!

Mathematics of Model Reduction Workshop, University of Leicester, August 28-30, 2007

- slide 23 of 23