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Algorithms on manifolds

Principal manifolds: lines (or surfaces) passing through the
middle of the data distribution.

Question: How to define and compute such things when the
data are not points in IRn but points on abstract manifolds?

Motivation: SYMMETRY
In many problems, data represent geometric objects that
are invariant under certain transformations.

Principal manifolds workshop – Leicester – August 2006 – p. 2/??



A three-step approach

An optimization-based formulation of the
computational problem

Generalization of optimization algorithms on abstract
manifolds

Exploit flexibility and additional structure to build
numerically efficient algorithms

Optimization algorithms on matrix manifolds, book in preparation
P.-A. Absil, R. Mahony, R. Sepulchre.
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Applications

Eigenvalue problems
(Invariant subspace calculation, PCA, SVD, . . . )

Statistical problems
(Matrix approximations, ICA, . . . )

Pose estimation and motion recovery

. . .
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Outline

Part I: a quick illustration of the three steps

Part II: ICA and gene expression data analysis
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Eigenvalue problems as optimization

Let A a n × n symmetric matrix.
Find an eigenvalue λ ∈ IR and an eigenvector y ∈ IRn such
that Ay = λy

FACT: Eigenvectors are critical points of the Rayleigh
quotient

f : IRn
∗ → IR : f(y) =

yT Ay

yT y

The global minimum is the leftmost eigenvector.
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Manifolds associated to eigenvectors

SYMMETRY: f(µy) = f(y) ∀µ ∈ IR∗

⇒ critical points are not isolated in IRn.

REMEDY:
Impose a normalization constraint ‖ y ‖= 1

⇒ Optimization on the sphere Sn−1

or
treat yIR∗ as one point in the projective space

Pn−1 = {yIR∗ : y ∈ IRn
∗}

⇒ Optimization on the projective space Pn−1
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Generalized eigenvalue problems

Let A,B n × n symmetric and B positive definite.
Find (λ, y) such that Ay = λBy

The cost function is now defined over the full rank n× p

matrices:

f(Y ) = trace(YTAY(YTBY)−1)

Y∗ is a global minimizer of f iff Y∗ span the leftmost
p-dimensional invariant subspace of B−1A.
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Manifolds for invariant subspaces

SYMMETRY: f(Y M) = f(Y ) for all full rank p × p matrix M
⇒ critical points are not isolated in IRn×p.

REMEDY:
Impose a normalization constraint ‖ Y T Y ‖= Ip

⇒ Optimization on the Stiefel manifold St(p, n)
or
treat yGL(p) as one point in the Grassmann manifold
Gr(p, n) of p-dimensional subspaces of IRn.
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Important matrix manifolds

Sn−1, St(p, n) are examples of embedded manifolds in
vector spaces.

Pn−1, Gr(p, n) are examples of quotient manifolds in
vector spaces

The linear structure of the total vector space is very helpful
for computations!
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A three-step approach

An optimization-based formulation of the
computational problem

Generalization of optimization algorithms on abstract
manifolds

Exploit flexibility and additional structure to build
numerically efficient algorithms

How different is an algorithm in a vector space and on a
manifold?
Illustration: line-search algorithm
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Line search in a vector space

xk+1 = xk + tkηk

The vector ηk is a search direction
The scalar tk dictates the step length
≈ discretized version of the continuous-time descent
gradient flow

ẋ = −gradf(x)
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Line search on a manifold

Let M an abstract Riemannian manifold.

xk+1 = Expxk
(tkξ) = γ(tk : xk, ξ)

Start at xk; choose a direction ξ in the tangent space TxM ;
follow for tk units the geodesic passing at xk and tangent to
ξ.
( Luenberger, 73; Gabay, 82).
Conceptually elegant and useful; numerically unpractical.
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Optimization on manifolds

Newton method (Smith 93, Mahony 94)

Conjugated gradients (Edelman 96)

Trust region method (Absil et al. 04)

. . .

Translation of corresponding algorithms in vector spaces +
convergence theory.
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A three-step approach

An optimization-based formulation of the
computational problem

Generalization of optimization algorithms on abstract
manifolds

Exploit flexibility and additional structure to build
numerically efficient algorithms

Does this approach lead to competitive numerical algorithms?
Illustration: line-search algorithm
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Retractions

xk+1 = Rxk
(tkξ)

The convergence theory of line search methods still holds if
the exponential mapping is replaced by ANY mapping
R : TM → M satisfying Rx(0x) = x and DRx(0x) = idTxM .
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Examples of retractions

Use the linear structure of the total space:
On Sn−1: Rx(ξ) = x+ξ

‖x+ξ‖

On Gr(p, n): RspanY (ξ) = span(Y + ξY ) with ξY the
horizontal lift of ξ

Good retractions may turn the algorithm into a numerically
efficient procedure.
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State of the art

Brute force trust-region algorithms applied to the Rayleigh
quotient cost on Gr(p, n) (Absil et al, 04) compete with the
best available numerical algorithms for large-scale
problems.
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Some benefits of the approach

A solid framework for convergence analysis;

A geometric interpretation of existing heuristics;

Sometimes, new and competitive algorithms

More in
Optimization algorithms on matrix manifolds,
Princeton University Press, 2007.
P.-A. Absil, R. Mahony, R. Sepulchre.
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Independent Component Analysis

• Blind source separation based on the statistical independence of the sources.

• It assumes a linear, instantaneous and noisy mixture of sources,

x = Hs + v, H ∈ R
n×p.

➠ Given the observations x, identify the mixing matrix H and the independent
sources s.
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Outline

• ICA algorithms are optimization algorithms on manifolds.

• The application of ICA to gene expression data raises central issues.
(Cost function, manifold, optimization algorithm?)
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The basic ICA algorithm

1. Let assume a linear demixing model: z = WT
x, W ∈ R

n×p.

2. Measure the statistical independence of the estimated sources zi (⇒ contrast).

3. Select the W ∗ that maximizes that measure.

➠ Two main features: the contrast and the optimization algorithm.
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The contrast

• Definition:

A function γ(·) : W ∈ M → γ(W ) ∈ R that measures the statistical
independence of the zi.

• Different types of contrast:

➠ Based on the mutual information (MI is zero at the independence and
otherwise always positive).

➠ Diagonalization of the rth-order cumulant tensor (usually r=4).

➠ Joint approximate diagonalization of a set of matrices (SOBI, JADE, etc.).

➠ The constrained covariance: sup
f,g

cov(f(z1), g(z2)).

➠ ...
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The optimization algorithm

• Optimization on a matrix manifold: W ∗ = argmax
W∈M

γ(W ).

• Which manifold M ?

Inherent symmetries of ICA:

➠ Continuous symmetry: W ∼ WΛ, with Λ an invertible diagonal matrix.

➠ Discrete symmetry: W ∼ WP , with P a permutation matrix.
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Choice of a manifold

• Optimization on the orthogonal group:

Op = {Y ∈ R
p×p : Y TY = Ip}.

➠ Jacobi algorithms (JADE, SOBI, RADICAL), KernelICA.

• Optimization on the orthogonal Stiefel manifold:

St(n, p) = {Y ∈ R
n×p : Y TY = Ip}.

➠ FastICA (one-unit algorithm used in a deflation scheme).

• Optimization on the oblique manifold [P.-A. Absil and K.A. Gallivan, 2006]:

OB(n, p) = {Y ∈ R
n×p : diag(Y TY ) = Ip}.

➠ Trust region optimization.
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Prewhitening in ICA

• ICA is usually used in conjunction with PCA.

PCA ICA
x x̃ z

• Motivations for prewhitening:

➠ Good-conditioning of the ICA problem.

➠ Reduction of the dimensions of the ICA problem.

➠ Restriction of the ICA optimization to the orthogonal Stiefel manifold
(prewhitening-based algorithms).
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Discussion about prewhitening

• The prewhitening step is biased in the presence of noise and outliers.

Optimization on orthogonal manifolds is not able to compensate for these
errors.

Optimization on non-orthogonal manifolds is more accurate.

• Optimization algorithms on orthogonal manifolds are usually better
conditioned.

Optimization on non-orthogonal manifolds might be less robust.

• The compromise between performance and robustness is rarely discussed in
the literature, especially for high-dimensional problems.
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Outline

• ICA algorithms are optimization algorithms on manifolds.

• The application of ICA to gene expression data raises central issues.
(Cost function, manifold, optimization algorithm?)

Workshop on Principal Manifolds, Leicester, August 2006 9



What are gene expression data?

• Gene expression denotes the relevance of a specific gene on the biological
functions to be fulfilled in the cell.

• DNA microarrays are intensively used in biochemistry and biomedicine to
estimate the gene expression levels.

• They provide a huge amount of data (typically, ∼10.000 genes and ∼100
experiments).

➠ Dimensionality reduction methods are needed for the analysis of these data.
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Dimensionality reduction by ICA: Motivation

• Each biological function relies on a subset of genes (expression mode).

• Gene expression levels result from several biological processes that take place
independently.

• Gene expression is assumed to be a linear function of the expression modes.

➠ Independence and linearity are the basic requisites for ICA1.

1First application of ICA to microarrays:

W. Liebermeister, Linear modes of gene expression determined by independent component analysis, Bioinformatics
18 (2002), 51–60.
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ICA for the analysis of gene expression data
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Preliminary results

• Application of standard ICA algorithms to breast cancer databases2.

• Performance:
ICA seems to outperform PCA in relating expression modes to biological
pathways (i.e., groups of genes that participate together when a certain
biological function is required).

2In collaboration with A.E. Teschendorff, Department of Oncology, University of Cambridge
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Challenges

Standard ICA algorithms are not well adapted for gene expression data.
(i.e., few experiments, many observations, lot of outliers and noise.)

➠ New algorithmic developments are needed, i.e, cost functions, manifolds and
optimization algorithms specially dedicated to this kind of data sets.
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Conclusion

• ICA performs dimensionality reduction by assuming that the observations arise
from several independent sources.

• ICA algorithms are optimization-based algorithms on manifolds.

• ICA seems promising for the analysis of microarrays but raises central robustness
and performance issues.
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