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Microscopic versus macroscopic modeling

Microscopic modeling

Example: particle model for the evolution of
positions and velocities of particles

Detailed spatial/temporal behavior

Computationally expensive → limited to small
spatio-temporal domains

Macroscopic modeling

Example: PDE for density of particles

Only smooth averaged macroscopic behavior

Computationally more tractable

Can be studied using standard numerical tools
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Analytical coarse-graining

Micro-model → macro-model under certain simplifying assumptions
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Equation-free computing

Setting

Microscopic simulator available; we observe smooth macroscopic behavior. . .

. . . but we fail to derive the macroscopic model (although it exists conceptually)

Equation-free computing (Kevrekidis et al, 2000—)

Perform macroscopic tasks anyway!

Main tool: the coarse time-stepper

Approximate time integrator for
unavailable macroscopic model
Each step consists of 3 substeps:

1) Lifting: initialize micro-simulator
according to given macro-field

2) Micro-simulation over time ∆t

3) Restriction: extract macro-fields

Relies on a separation of time-scales
To increase efficiency: use as “input” for time-stepper based system-level tasks
(time-integration, bifurcation analysis, control,. . . )
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Lifting: the hardest part

Appropriate initialization of the microscopic state (U,V ), according
to the macroscopic variable U (V :“higher order moments”)

Nontrivial one-to-many mapping: U → (U,V )

If a macroscopic equation in terms of only U indeed exists, the
higher order moments V quickly become functionals of U: slaving
relations V=F(U)

The slaving relations define a “slow manifold” in microscopic phase
space, on which the macroscopic dynamics take place

Fast attraction towards the manifold does not imply that the CTS
computes a correct macroscopic trajectory (U may change)!

Good lifting (close to the slow manifold) is important!
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Goal of the talk

In this talk, we will study the numerical properties of different aspects of
equation-free computing when the microscopic simulator is a lattice
Boltzmann model

Good caricature of realistic multiscale problems

Simple enough to do some mathematical analysis (deterministic,
well-known theoretical multiscale expansion)



Introduction Analysis of the CTS (I) The class of constrained runs schemes Analysis of the CTS (II) Conclusions

Outline

1 Introduction
Equation-free multiscale computing
The lattice Boltzmann model

2 Accuracy and stability of the coarse time-stepper (I)

3 The class of constrained runs schemes

4 Accuracy and stability of the coarse time-stepper (II)

5 Conclusions



Introduction Analysis of the CTS (I) The class of constrained runs schemes Analysis of the CTS (II) Conclusions

Model problem: 1D reaction-diffusion LBM

Available “microscopic” model: lattice Boltzmann model

Simplified kinetic model

Discrete in space x , time t and crudely discretized in velocity v

Tracks particle distribution functions f−1(xj , tk), f0(xj , tk) and
f1(xj , tk)

Macroscopic density of particles: ρ =
∑1

i=−1 fi

LBM evolution law:

fi (xj + vi∆t,tk + ∆t) − fi (xj , tk) =

− ω(fi (xj , tk) −
1

3
ρ(xj , tk)) + λ

∆t

3
ρ(xj , tk)(1 − ρ(xj , tk))

Diffusive BGK collisions: fi ’s relax to local diffusive equilibrium
f

eq
i = ρ/3 with relaxation coefficient ω ∈ (0, 2)

Nonlinear reactions: depend on λ and density ρ
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Lifting and restriction for the LBM

1-to-1 correspondence between f−1, f0, f1 and velocity moments of
the particle distribution functions

ρ =
∑1

i=−1 fi (density)

φ =
∑1

i=−1 i · fi (momentum)

ξ = 1
2

∑1
i=−1 i2 · fi (energy)

From Chapman-Enskog multiscale expansion, we can derive

1) Long-term behavior of LBM: Fisher equation
∂ρ

∂t
=

(
2 − ω

3ω

∆x
2

∆t

)
∂2ρ

∂x2
+ λρ(1 − ρ) ⇒ U = ρ, V = (φ, ξ)

2) The slaving relations are

φ = −
2

3ω

∂ρ

∂x
∆x + O(∆x

3), ξ =
1

3
ρ −

ω − 2

18ω2

∂2ρ

∂x2
∆x

2 + O(∆x
4)

Ideally, we would like to lift with these slaving relations

In practice: unavailable → numerical alternative: constrained runs

First however, we study the accuracy and the stability of the coarse
time-stepper when lifting with the slaving relations
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The coarse time-stepper
Lifting with the slaving relations

Lifting: appropriate discretization of truncated slaving relations (up
to order p)

φ(x , t) =
∑

∞

p=0 φp(x , t)∆x
p = − 2

3ω

∂ρ(x,t)
∂x

∆x + ω2
−2ω+2
9ω3

∂3ρ(x,t)

∂x3 ∆x
3 + . . . ,

ξ(x , t) =
∑

∞

p=0 ξp(x , t)∆x
p = 1

3
ρ(x , t) − ω−2

18ω2
∂2ρ(x,t)

∂x2 ∆x
2 + . . . .

Simulation: 1 LBM step

Restriction: return ρ
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Accuracy and stability of the coarse time-stepper

Pure diffusion with D = 1:
∂ρ(x , t)

∂t
=

∂2ρ(x , t)

∂x2
, ρ(0, t) = ρ(1, t) = 0.

CTS with p = 0: lifting with equilibrium distributions fi = f
eq
i = ρ/3

ρn+1 = Aρn, with A = [. . . 0 1/3 1/3 1/3 0 . . .]

Truncation error: T (x , t) =
∂ρ

∂t
−

∆x
2

3∆t

∂2ρ

∂x2
=

∂ρ

∂t
−

ω

2 − ω

∂2ρ

∂x2

Unless if ω = 1, the computed trajectory is the solution of modified
equation (diffusion with different D)

Stability interval: ω ∈ (0, 2)

CTS with p = 1

A = [. . . 0
1 − ω

6ω
1/3

2ω − 1

3ω
1/3

1 − ω

6ω
0 . . .]

Truncation error: T (x , t) =
1

2

∂2ρ

∂t2
∆t −

1

3

∂4ρ

∂x4
∆x

2 +
1

12

∂4ρ

∂x4

∆x
4

∆t

First-order accurate in time and second-order accurate in space if
∆t = O(∆x2) (diffusive scaling)

Stability interval: ω ∈ (0.349, 2)

CTS with p = 2 : . . .
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Comparison to traditional explicit FD scheme for PDE

Traditional explicit FD: ρn+1
j = ρn

j + D ∆t
∆x2

(
ρn

j+1 − 2ρn
j + ρn

j−1

)

FD for PDE:

Truncation error: T (x , t) =
1

2

∂2ρ

∂t2
∆t −

1

12

∂4ρ

∂x4
∆x

2

Stability interval: ∆t < 0.5∆x
2

CTS with p = 1:

Truncation error: T (x , t) =
1

2

∂2ρ

∂t2
∆t −

1

3

∂4ρ

∂x4
∆x

2+
1

12

∂4ρ

∂x4

∆x
4

∆t

Stability interval: ω ∈ (0.349, 2) ⇔ ∆t < 1.577∆x
2
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The influence of increasing the number of LBM steps M

Larger M: allows off-manifold initial condition to get attracted to
the slow manifold (fast process) → improve accuracy

Density may change: not necessarily the correct trajectory on the SM

CTS with p = 0

Truncation error:

T (x , t) =
∂ρ

∂t
−
(

1 +
2

M
︸︷︷︸

slow

ω − 1

ω(ω − 2)

(

−1 + (1 − ω)M
︸ ︷︷ ︸

fast

)
)

∂2ρ

∂x2

The accuracy improves when M is increased

M should be very large to obtain accurate results! Efficiency?!

CTS with p = 1

Stability interval (ωmin, 2):

M=1 M=2 M=3 M=4 M=5 M=6 M=8 M=10
ωmin 0.349 0.310 0.311 0.268 0.231 0.227 0.198 0.177

The stability improves when M is increased
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Constrained runs [Gear & Kevrekidis (2005)]: basic idea

Goal: find V corresponding to U such that (U,V ) is close to the
slow manifold, without using the slaving relations

Class of CR schemes; m-th scheme computes V so that
d

m+1V

dtm+1
= 0

(U,V ) is then m-th order approximation of the desired state on the
slow manifold [Gear, Kaper, Kevrekidis, Zagaris (2005)]

Only microscopic simulator available → approximate
d

m+1V

dtm+1

Solve the resulting forward difference equation with functional
iteration → constrained runs functional iteration
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Constrained runs functional iteration: interpretation

When m = 0, the scheme repeatedly

integrates over a short time interval
resets U (in order to “constrain” the macroscopic variable)

In general: V is updated using an m-th degree interpolant for V

m = 0 m = 1
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Analysis (accuracy/convergence) of constrained runs FI

For slow-fast systems: [Gear, Kaper, Kevrekidis, Zagaris (2005)]

For 1D-RD-LBM (m = 0): [Van Leemput, Vanroose, Roose (2005)]

Constrained runs FI is stable for all ω ∈ (0, 2)
Converges to a good approximation (O(1) and O(∆x) terms of the
slaving relations are correct)
Asymptotic convergence factor |1 − ω| (again!)
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Constrained runs FI for the LBM (m ≥ 0)

For the LBM (λ = 0): accuracy increases as m increases

0 0.5 1 1.5 2 2.5 3 3.5 4
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−15

10
−12

10
−9

10
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10
−3

m

||e
rr

or
|| 2

Compare to an “exact” slaved state from long LBM simulation
m = 1: 2 extra terms of the slaving relations correct (up to O(∆x

3))

If m > 0, the fixed point iteration may however be unstable
For the LBM (λ = 0): stability interval (ωmin, ωmax)

m 0 1 2 3 4
ωmin 0.000 0.690 0.865 0.929 0.959

ωmax(!) 2.000 1.291 1.133 1.072 1.043
→ arbitrary slow convergence or divergence



Introduction Analysis of the CTS (I) The class of constrained runs schemes Analysis of the CTS (II) Conclusions

Constrained runs FI for the LBM (m ≥ 0)

For the LBM (λ = 0): accuracy increases as m increases

0 0.5 1 1.5 2 2.5 3 3.5 4

10
−15

10
−12

10
−9

10
−6

10
−3

m

||e
rr

or
|| 2

Compare to an “exact” slaved state from long LBM simulation
m = 1: 2 extra terms of the slaving relations correct (up to O(∆x

3))

If m > 0, the fixed point iteration may however be unstable
For the LBM (λ = 0): stability interval (ωmin, ωmax)

m 0 1 2 3 4
ωmin 0.000 0.690 0.865 0.929 0.959

ωmax(!) 2.000 1.291 1.133 1.072 1.043
→ arbitrary slow convergence or divergence



Introduction Analysis of the CTS (I) The class of constrained runs schemes Analysis of the CTS (II) Conclusions

Outline

1 Introduction

2 Accuracy and stability of the coarse time-stepper (I)

3 The class of constrained runs schemes
The functional iteration
Stabilization with a Newton-Krylov method
Comparison: FI versus NK

4 Accuracy and stability of the coarse time-stepper (II)

5 Conclusions



Introduction Analysis of the CTS (I) The class of constrained runs schemes Analysis of the CTS (II) Conclusions

Newton-Krylov constrained runs: basic idea

Replace functional iteration with Newton-Krylov solver

FI: V k+1 = C(U;V k) (U parameter, V unknown)

Solve g(U;V ) := V − C(U;V ) = 0 with Newton’s method:

Vk+1 = Vk + δVk
∂g
∂V

(U;Vk) · δVk =
(
I − ∂C

∂V
(U;Vk)

)
· δVk = −g(U;Vk)

Only microscopic simulator available → linearization of g or C not
available

Estimate matrix-vector product
(
I − ∂C

∂V
(U;Vk)

)
· δVk ≈ δVk − C(U;Vk+εδVk )−C(U;Vk )

ε

with

ε =
√

ε||Vk ||/||δVk || if δVk 6= 0, Vk 6= 0

Matvec available → solve linear subsystems with Krylov method
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Illustration of the Newton iteration
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Newton iteration number

m=0
m=1
m=2
m=3

Left: norm of nonlinear residual / error (again: compare to “exact”
slaved state from a long LBM simulation)

m = 3, ω = 1.25 (FI unstable!), λ = 0 (linear) or 1000 (nonlinear)

λ = 0: 2 Newton steps required (accuracy matvec: 10−8)

λ = 1000: small number of steps if irregular initial guess (quadratic
convergence)

Right: norm of error when λ = 1000, zero initial guess, various m.
Only 2 or 3 steps needed. If m < 3: error levels off earlier.
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Solving the linear subsystems Ax = b with GMRES

GMRES: approximates x∗ = A−1b by xn ∈ Kn = 〈b,Ab, . . . ,An−1b〉
such that ||rn||2 = ||b − Axn||2 is minimized → optimal use of
expensive matvecs

LBM, m = 0: ||rn||2 ≤ K |1 − ω|n ; cf. rate |1 − ω| for FI (again!)

LBM, m > 0: FI unstable if ω 6≈ 1 (eigenvalues ∂C/∂V outside unit
disk) → may also cause slow GMRES convergence (A = I − ∂C/∂V )

Using very irregular initial guess (for worst-case behavior):
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(Much) faster convergence if zero initial guess
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Preconditioning the GMRES iteration (for LBM)

Additional acceleration possible by incorporating a preconditioner

We use a coarse grid correction preconditioner [Padiy, Axelsson,

Polman (2000)]: M−1 = PN
N/r

A−1
c R

N/r

N + ηI

P and R: traditional prolongation and restriction from multigrid
A

−1
c : (in)exact coarse system solve using an inner GMRES

ηI : tuning parameter times the identity matrix

Inexact inner GMRES → variable precond. → flexible outer GMRES

LBM example: m = 0, ω = η = 0.1, A ∈ R
256x256, Ac ∈ R

128x128
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Comparison: FI versus NK

ω FI NK Precond. NK
0.1 ∞ (∞) 1.9e-02 (518) 1.9e-02 (266)
0.2 ∞ (∞) 1.2e-03 (492) 1.2e-03 (120)
0.3 ∞ (∞) 1.3e-04 (468) 1.3e-04 (64)
0.4 ∞ (∞) 5.9e-05 (308) 5.9e-05 (40)
0.5 ∞ (∞) 2.6e-05 (132) 2.6e-05 (30)
0.6 ∞ (∞) 1.2e-05 (64) 1.2e-05 (24)
0.7 5.8e-06 (56) 5.8e-06 (36) 5.8e-06 (18)
0.8 3.0e-06 (38) 3.0e-06 (20) 3.0e-06 (16)
0.9 1.6e-06 (24) 1.6e-06 (14) 1.6e-06 (14)
1.0 8.9e-07 (4) 8.9e-07 (8) 8.9e-07 (10)
1.1 5.0e-07 (26) 5.0e-07 (14) 5.0e-07 (16)
1.2 2.8e-07 (50) 2.8e-07 (16) 2.8e-07 (20)
1.3 ∞ (∞) 1.6e-07 (16) 3.8e-07 (42)
1.4 ∞ (∞) 9.1e-08 (18) 1.2e-07 (72)
1.5 ∞ (∞) 1.1e-07 (152) 1.6e-07 (180)
. . . . . . . . . . . .

LBM, 128 spatial grid points, ω variable, λ = 100,m = 1, tol = 10−8

Accuracy (compared to m = 4 solution) and efficiency (# LBM
calls; 2 per GMRES iteration)
FI: can only be used in a limited range of ω-values
NK: can always be used
After convergence, the accuracy is the same (same fixed point)
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Comparison: FI versus NK

ω FI NK Precond. NK
0.1 ∞ (∞) 1.9e-02 (518) 1.9e-02 (266)
0.2 ∞ (∞) 1.2e-03 (492) 1.2e-03 (120)
0.3 ∞ (∞) 1.3e-04 (468) 1.3e-04 (64)
0.4 ∞ (∞) 5.9e-05 (308) 5.9e-05 (40)
0.5 ∞ (∞) 2.6e-05 (132) 2.6e-05 (30)
0.6 ∞ (∞) 1.2e-05 (64) 1.2e-05 (24)
0.7 5.8e-06 (56) 5.8e-06 (36) 5.8e-06 (18)
0.8 3.0e-06 (38) 3.0e-06 (20) 3.0e-06 (16)
0.9 1.6e-06 (24) 1.6e-06 (14) 1.6e-06 (14)
1.0 8.9e-07 (4) 8.9e-07 (8) 8.9e-07 (10)
1.1 5.0e-07 (26) 5.0e-07 (14) 5.0e-07 (16)
1.2 2.8e-07 (50) 2.8e-07 (16) 2.8e-07 (20)
1.3 ∞ (∞) 1.6e-07 (16) 3.8e-07 (42)
1.4 ∞ (∞) 9.1e-08 (18) 1.2e-07 (72)
1.5 ∞ (∞) 1.1e-07 (152) 1.6e-07 (180)
. . . . . . . . . . . .

NK is more efficient, even without preconditioning
Only near ω = 0, NK becomes very expensive (oversolving!)
There the preconditioner may keep the cost acceptable

Much larger preconditioning gain when finer LBM discretization
Coarse time integration: lifting may become (much) cheaper (ρ
smoother → residual smoother → faster convergence!)
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The coarse time-stepper
Lifting with constrained runs

Lifting: K steps of the constrained runs functional iteration (m = 0)

Simulation: 1 LBM step

Restriction: return ρ
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Accuracy and stability of the coarse time-stepper

Pure diffusion with D = 1:
∂ρ(x , t)

∂t
=

∂2ρ(x , t)

∂x2
, ρ(0, t) = ρ(1, t) = 0.

CTS with K steps of the constrained runs functional iteration (m = 0)

Truncation error: T (x , t) =
∂ρ

∂t
−
(

ω − 2 + 2(1 − ω)K+1

ω − 2

)
∂2ρ

∂x2

Small K : again solution of diffusion equation with different D

As K grows: fast linear convergence D → 1, rate |1 − ω| (again!)
Truncation error if K = ∞:

T (x , t) =
1

2

∂2ρ

∂t2
∆t +

(
1

6
∆x

2 −
27

12

∆t
2

∆x2

)
∂4ρ

∂x4

Stability interval:

K=0 K=1 K=2 K=4 K=6 K=8 K=25 K=100 K=∞

ωmin 0.000 0.500 0.352 0.305 0.253 0.217 0.107 0.038 0.000
ωmax 2.000 1.250 1.201 1.200 1.200 1.200 1.200 1.200 1.200

Now unstable if ω > 1.2 (if ∆t is too small!)
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The influence of increasing the number of LBM steps M

CTS with constrained runs lifting until convergence:

Accuracy gets better

Stability interval (0, ωmax):

M=1 M=2 M=3 M=4 M=5 M=6 M=8 M=10
ωmax 1.200 1.500 1.500 1.500 1.858 1.583 1.708 1.814

The stability improves when M is increased (not monotonically)
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Conclusions

We studied the numerical properties of different aspects of equation-free
computing when the microscopic simulator is a lattice Boltzmann model

For time-dependent problems, sufficiently accurate lifting is crucial
to obtain a coarse time-stepper that mimics the macroscopic system

Constrained runs numerically implements such a good lifting

if m increases: lifting more accurate but numerics less stable
can be stabilized with a (preconditioned) Newton-Krylov solver

Even if the lifting is sufficiently accurate, the coarse time-stepper
may be unstable for sometimes surprising parameter values.
Increasing the coarse time step may help
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