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Microscopic versus macroscopic modeling

Microscopic modeling

o Example: particle model for the evolution of oe °® ° o
positions and velocities of particles - ~./ o Q ®

o Detailed spatial/temporal behavior o o e ® /

o Computationally expensive limited to small ® 4 * ’ ®
spatio-temporal domains L I N o 1 e ®

Macroscopic modeling
Example: PDE for density of particles
Only smooth averaged macroscopic behavior /;I,,/f:'::::::‘s‘%\&
Computationally more tractable "“‘f“s“‘“ 3
Can be studied using standard numerical tools

7205,

:‘“\\x

e ¢ ¢ ¢

Analytical coarse-graining
@ Micro-model! macro-model under certain simplifying assumptions
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Equation-free computing

Setting
@ Microscopic simulator available; we observe smooth macroscopic behavior
o ... but we fail to derive the macroscopic model (although it exists coriaafy)
Equation-free computing (Kevrekidis et al, 2000]|)

o Perform macroscopic tasks anyway! p— p—
Microscopic
@ Main tool: the coarse time-stepper il
o Approximate time integrator for <
unavailable macroscopic model : :
o Each step consists of 3 substeps: Mecmscoplo Maczoscop
ey p T . . p /—\ time“stdpper
1) Lifting: initialize micro-simulator b et

according to given macro- eld
2) Micro-simulation over time t
3) Restriction: extract macro- elds
o Relies on a separation of time-scales
o To increase e ciency: use as \input" for time-stepper based systertevel tasks
(time-integration, bifurcation analysis, control,...)
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Lifting: the hardest part

o Appropriate initialization of the microscopic statdJ; V), according
to the macroscopic variable) (V :\higher order moments")

@ Nontrivial one-to-many mappingU ! (U;V)

o If a macroscopic equation in terms of only indeed exists, the
higher order moment¥ quickly become functionals dfi: slaving
relations V=F(U)

@ The slaving relations de ne a \slow manifold" in microscopic phase
space, on which the macroscopic dynamics take place

o Fast attraction towards the manifold does not imply that the CTS
computes a correct macroscopic trajectory (may change)!
@ Good lifting (close to the slow manifold) is important!

constantU____
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Goal of the talk

In this talk, we will study the numerical properties of di erent aspects o
equation-free computing when the microscopic simulator is a lattice
Boltzmann model

@ Good caricature of realistic multiscale problems

@ Simple enough to do some mathematical analysis (deterministic,
well-known theoretical multiscale expansion)
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Model problem: 1D reaction-di usion LBM

Available \microscopic" model: lattice Boltzmann model
@ Simpli ed kinetic model
@ Discrete in space, time t and crudely discretized in velocity
o Tracks particle distribution function$ 1(x;; tk), fo(x;; tx) and
(X5 tk) P
o Macroscopic density of particles: = = = , f;
o LBM evolution law:

fi (Xj + v Ut + t) fi(xj;tk) =

! (04 t) %(x,-;tk))+ 5 0 (t)

fi
— o
-/ fo
@ Di usive BGK collisions:f;'s relax to local di usive equilibrium

f.°9= =3 with relaxation coe cient! 2 (0; 2)
@ Nonlinear reactions: depend onand density
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Lifting and restriction for the LBM

o 1-to-1 correspondence betweény;fy; f; and velocity moments of
the particle distribution functions

P4 .
= pi- 1fi (density)
= pB= 11 fi (momentum)
=1L |i? f (energy)
@ From Chapman-Enskog multiscale expansion, we can derive

1) Long-term behavior of LBM: Fisher equation

@_ 2! x* @& _ _.
@_ 3l t @+ (l ) ) U= 7V_(1 )
2) The slaving relations are

2 @ s, _1 1 2@
@ PO T3 Eree

o |deally, we would like to lift with these slaving relations
@ In practice: unavailablé numerical alternative: constrained runs

o First however, we study the accuracy and the stability of the coarse
time-stepper when lifting with the slaving relations

x>+ O( x%
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Lifting and restriction for the LBM

@ 1-to-1 correspondence betweén,;fy; f; and velocity moments of
the particle distribution functions

P4 .
= _i. .fi (density) Lift
pl: i fi (momentum) ———— (macro)
=11 j2 § (energy) Restrict
2 i= 1 [

@ From Chapman-Enskog multiscale expansion, we can derive
1) Long-term behavior of LBM: Fisher equation
@ 2 1 XX @
= = - = _ 4 1 = V = .
@~ 37 t ezt @ ) ) U= .v=()
2) The slaving relations are
2@

3y. _1 ! 2@ 2 4
3I@X+O(X), =3 W@X+O(X)

o Ideally, we would like to lift with these slaving relations
@ In practice: unavailablé numerical alternative: constrained runs

o First however, we study the accuracy and the stability of the coarse
time-stepper when lifting with the slaving relations
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© Accuracy and stability of the coarse time-stepper (1)
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The coarse time-stepper

Lifting with the slaving relations

o Lifting: appropriate discretization of truncated slaving relationgp(u

to orderp
()= by plat) xP= ZOED x4 2B @00 3y
)= Loop0at) xP= 1 (t) RO X

@ Simulation: 1 LBM step
@ Restriction: return
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Accuracy and stability of the coarse time-stepper
@(x;t) _ @ (xt). ©0:t)= (L:t)=0.

Pure di usion with D = 1: :
@ @2
e CTS with p = 0: lifting with equilibrium distributionsf; = f* = =3

o 1 = A, withA=[::: 0 1=3 1=3 1=3 0 ::]

i T @ X@ _ @ ! 4
< TruncatIOn error. T(X,t) - @ ﬁ@ - @ ﬁ@
¢ Unless if! =1, the computed trajectory is the solution of modi ed
equation (di usion with dierent D)

o Stability interval: ! 2 (0;2)

o CTSwithp=1
1 ! 2! 1 1

! !

e A=[::: O o 1=3 3 1=3 N 0:::]
i Ty — 1@ 1@ 2 1 X4
o Truncation error: T (x;t >@z t 367 X<+ [P SIS

¢ First-order accurate in time and second-order accurate in space if
t = O( x?) (diusive scaling)

o Stability interval: ! 2 (0:349; 2)
o CTSwithp=2:
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Comparison to traditional explicit FD scheme for PDE

it i~ . n+l — n t n n n
Traditional explicit FD: "~ = '+ D—; 4 27+ [,

o FD for PDE:
i Ty 16 1@
¢ Truncation error: T (x;t) = 5@ t el X
o Stability interval: t < 0:5 x
o CTS withp = 1:
: T (v — 1 @ 1 @ 2 1 @ X4
o Truncation error: T (x;t) = 2@z t 366 X2+ oY Trs
o Stability interval: | 2 (0:349,2), t< 1577 x2
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The in uence of increasing the number of LBM stdys

o LargerM: allows o -manifold initial condition to get attracted to
the slow manifold (fast procesd) improve accuracy

o Density may change: not necessarily the correct trajectory on the SM

CTS with p=0
@ Truncation error: I
= . @ 2 1 1 M @
=g g X)) e

fast
slow

@ The accuracy improves whev is increased
@ M should be very large to obtain accurate results! E ciency?!

CTS with p=1
o Stability interval ( min ; 2):

M=1 M=2 M=3 M=4 M=5 M=6 M=8 M=10

'mn | 0.349 0.310 0.311 0.268 0.231 0.227 0.198 0.1y7

@ The stability improves whe is increased
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© The class of constrained runs schemes
@ The functional iteration



The class of constrained runs schemes
o] Yolelo)

Constrained runs [Gear & Kevrekidis (2005)]: basic ide

@ Goal: nd V corresponding tdJ such that (U;V) is close to the
slow manifold, without using the slaving relations
d™tv
@ Class of CR schemes)-th scheme compute¥ so that e =0
o (U;V) is then m-th order approximation of the desired state on the
slow manifold [Gear, Kaper, Kevrekidis, Zagaris (2005)]
m+1

dtm+1
@ Solve the resulting forward di erence equation with functional
iteration ! constrained runs functional iteration

@ Only microscopic simulator available approximate
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Constrained runs functional iteration: interpretation

@ Whenm = 0, the scheme repeatedly

o integrates over a short time interval
e resetsU (in order to \constrain" the macroscopic variable)

@ In general:V is updated using am-th degree interpolant fov
m=0 m=1
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Analysis (accuracy/convergence) of constrained runs F

o For slow-fast systems: [Gear, Kaper, Kevrekidis, Zagaris (2005)]
@ For 1D-RD-LBM (m = 0): [Van Leemput, Vanroose, Roose (2005)]
e Constrained runs Fl is stable for all 2 (0;2)
e Converges to a good approximationd(1) and O( Xx) terms of the

slaving relations are correct)
e Asymptotic convergence factojl ! j (again!)
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Constrained runs FI for the LBMn( 0)

o For the LBM ( =0): accuracy increases as increases

10° |

[
(=}
&

[lerror]],
=
o.
©

H
Y]
T

=
o.

-15 |

10

0 015 i 115 é 215 :"»
m
o Compare to an \exact" slaved state from long LBM simulation
o m=1: 2 extra terms of the slaving relations correct (up taO( x°))
e If m> 0, the xed point iteration may however be unstable
o For the LBM ( = 0): stability interval (! min ;! max)

m 0 1 2 3 4
"'mn | 0.000 0.690 0.865 0.929 0.95
Pmax (D) | 2000 1.291 1.133 1.072 1.04

I arbitrary slow convergence or divergence

35 4

©

W
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Constrained runs FI for the LBMn( 0)

o For the LBM ( =0): accuracy increases as increases

[lerror||,
=
o,

[N
O‘
o
S
T

=
o.
5
T

0 &5 i LS é 25 é 55 4
m
o Compare to an \exact" slaved state from long LBM simulation
o m=1: 2 extra terms of the slaving relations correct (up taO( x3))
o If m> 0, the xed point iteration may however be unstable
o For the LBM ( =0): stability interval (! min ;! max)

m 0 1 2 3 4

'min | 0.000 0.690 0.865 0.929 0.959

'max () | 2.000 1.291 1.133 1.072 1.043
I arbitrary slow convergence or divergence
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9 Stabilization with a Newton-Krylov method
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Newton-Krylov constrained runs: basic idea

]

Replace functional iteration with Newton-Krylov solver
e FI: V¥*1 = C(U; V¥) (U parameter, V unknown)
Solveg(U;V) := V C (U;V) =0 with Newton's method:
Virr = Vet Vi

DUV k= I ZUV) V= g(UsVi)
Only microscopic simulator available linearization ofg or C not
available
o Estimate matrix-vector product
I %(U,Vk) Vi Vi CUsVk+ Vi) C (UVy)

©

©

with
p_. .. ..
= ThiVAdiEl Vil if Vic80; V80
@ Matvec availabld solve linear subsystems with Krylov method



The class of constrained runs schemes
00@00

lllustration of the Newton iteration

Hres\dua\l\2 and \lermr\l2
Jlerrorl,

0 1 2 6 7 8 0 1 2 6 7 8

3 4 5 3 4 5
Newton iteration number Newton iteration number

o Left: norm of nonlinear residual / error (again: compare to \exact"
slaved state from a long LBM simulation)

o m=3;! =1:25 (Fl unstable!), =0 (linear) or 1000 (nonlinear)

@ =0: 2 Newton steps required (accuracy matvec: 19

@ =1000: small number of steps if irregular initial guess (quadratic
convergence)

@ Right: norm of error when = 1000, zero initial guess, various.
Only 2 or 3 steps needed. ih < 3: error levels o earlier.
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Solving the linear subsysteAg = b with GMRES

such thatjjrpjj2 = jjb  AXpjj2 is minimized! optimal use of
expensive matvecs

o LBM, m=0: jjryjj2  Kj1 !'j"; cf. ratejl ! for FI (again!)

o LBM, m> 0: Fl unstable ift 6 1 (eigenvaluegaC=@ outside unit
disk)! may also cause slow GMRES convergente=(I @C=@)

@ Using very irregular initial guess (for worst-case behavior):

m=0

m=1
o —w=025 o —w=025
10 NN —w=05 | 10 R’**W:OS 4
(N ---w=075 RN - w=075
RN - -w=09 Y A w=0.9
= 10° N \ =' 10"
] \ N ]
E] N S
b=l \ AN bl
= 10 NN N = 10
10 \ 10
\
\
10* 10*
0 20 40 0 80 100 0 50 1 50 200 250
GMRES iteration number GMRES iteration number

o (Much) faster convergence if zero initial guess
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Preconditioning the GMRES iteration (for LBM)

o Additional acceleration possible by incorporating a preconditioner
@ We use a coarse grid correction preconditioner [Padiy, Axelsson,
Polman (2000):M 1= PN_ A IRY™ + |
¢ P and R: traditional prolongation and restriction from multigrid

o A. i (in)exact coarse system solve using @nner GMRES
e |: tuning parameter times the identity matrix

@ Inexactinner GMRES! variable precond! exible outer GMRES
o LBM exampleem=0, | = =0:1, A2 R?5x25% A 2 R128x128
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© The class of constrained runs schemes

9@ Comparison: Fl versus NK
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Comparison: Fl versus NK

! Fl NK Precond. NK
0.1 1 (1) 1.9e-02 (518) | 1.9e-02 (266)
0.2 1 (1) 1.2e-03 (492) | 1.2e-03 (120)
0.3 1 (1) 1.3e-04 (468) 1.3e-04 (64)
0.4 1 (1) 5.9e-05 (308) 5.9e-05 (40)
0.5 1 (1) 2.6e-05 (132) 2.6e-05 (30)
0.6 1 (1) 1.2e-05 (64) 1.2e-05 (24)
0.7 | 5.8e-06 (56) 5.8e-06 (36) 5.8e-06 (18)
0.8 | 3.0e-06 (38) 3.0e-06 (20) 3.0e-06 (16)
0.9 | 1.6e-06 (24) 1.6e-06 (14) 1.6e-06 (14)
1.0 8.9e-07 (4) 8.9e-07 (8) 8.9e-07 (10)
1.1 | 5.0e-07 (26) 5.0e-07 (14) 5.0e-07 (16)
1.2 | 2.8e-07 (50) 2.8e-07 (16) 2.8e-07 (20)
1.3 1 (1) 1.6e-07 (16) 3.8e-07 (42)
1.4 1 (1) 9.1e-08 (18) 1.2e-07 (72)
1.5 1 (1) 1.1e-07 (152) | 1.6e-07 (180)

o LBM, 128 spatial grid points! variable,
@ Accuracy (compared ton = 4 solution) and e ciency (# LBM

calls; 2 per GMRES iteration)
o FI: can only be used in a limited range bfvalues
@ NK: can always be used

o After convergence, the accuracy is the same (same xed point)

=100;m=1;tol =10 8
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Comparison: Fl versus NK

! Fl NK Precond. NK
0.1 1 (1) 1.9e-02 (518) | 1.9e-02 (266)
0.2 1 (1) 1.2e-03 (492) | 1.2e-03 (120)
0.3 1 (1) 1.3e-04 (468) 1.3e-04 (64)
0.4 1 (1) 5.9e-05 (308) 5.9e-05 (40)
0.5 1 (1) 2.6e-05 (132) 2.6e-05 (30)
0.6 1 (1) 1.2e-05 (64) 1.2e-05 (24)

0.7 | 5.86-06 (56) | 5.86-06 (36) | 5.86-06 (18)
0.8 | 3.0e-06 (38) | 3.0e-06 (20) | 3.0e-06 (16)
0.9 | 1.6e-06 (24) | 1.6e-06 (14) | 1.6e-06 (14)
1.0 | 8.9e-07 (4) 8.9e-07 (8) 8.9e-07 (10)
11 | 5.0e-07 (26) | 50e-07 (14) | 5.0e-07 (16)
12 | 2.8e-07 (50) | 2.8e-07 (16) | 2.8e-07 (20)
13 T (1) 1.6e-07 (16) | 3.8e-07 (42)
14 T (1) 9.1e-08 (18) | 1.26-07 (72)
15 T (1) 1.1e-07 (152) | 1.6e-07 (180)

¢

NK is more e cient, even without preconditioning
Only near! =0, NK becomes very expensive (oversolving!)
There the preconditioner may keep the cost acceptable

® ¢

©

Much larger preconditioning gain when ner LBM discretization
Coarse time integration: lifting may become (much) cheaper (
smoother! residual smoothet faster convergence!)

¢
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© Accuracy and stability of the coarse time-stepper (I1)
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The coarse time-stepper

Lifting with constrained runs

o Lifting: K steps of the constrained runs functional iteratiom(= 0)
o Simulation: 1 LBM step
@ Restriction: return
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Accuracy and stability of the coarse time-stepper

L @) @ (X)), Y= (1t =
Pure di usion with D = 1: a - @ 0;t)= (L;t)=0.

CTS with K steps of the constrained runs functional iteratiom(= 0)
__ | + | K+1
e Truncation error: T (X;t) = @ 2+2a 1) g{z

@ 2
¢ SmallK: again solution of di usion equation with di erent D
e As K grows: fast linear convergenc® ! 1, ratejl ! (again!)
e Truncation error if K = 1 : : @
= 1 1 , 27 t
TxXt)= z—= t+ = X° ——s —
xH=5a ' & 22 @
@ Stability interval:
K=0 K=1 K=2

min 0.000 0.500 0.352
! max 2.000 1.250 1.201

K=4 K=6 K=8 K =25 K=100 K=1

0.305 0.253 0.217 0.107 0.038 0.000
1.200 1.200 1.200 1.200 1.200 1.200
o Now unstable if! > 1:2 (if

t is too small)
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The in uence of increasing the number of LBM stdys

CTS with constrained runs lifting until convergence:

@ Accuracy gets better

@ Stability interval (0! max):
M=1 M=2 M=3 M=4 M=5 M=6 M=8 M=10
'max | 1.200 1,500 1.500 1500 1.858 1.583 1.708 1.814

o The stability improves whenM is increased (not monotonically)
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Conclusions

We studied the numerical properties of di erent aspects of equation-free
computing when the microscopic simulator is a lattice Boltzmann model

o For time-dependent problems, su ciently accurate lifting is crucial
to obtain a coarse time-stepper that mimics the macroscopic system

@ Constrained runs numerically implements such a good lifting

o if mincreases: lifting more accurate but numerics less stable
¢ can be stabilized with a (preconditioned) Newton-Krylov solver

o Even if the lifting is su ciently accurate, the coarse time-stepper
may be unstable for sometimes surprising parameter values.
Increasing the coarse time step may help
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