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Introduction

Mathematical Models

Microscopic/Mesoscopic models

• Relations between micro. variables

• particles (e.g. fluid molecules) . . .

• . . . collide and propagate

Macroscopic models

• Relations between macro. variables

∂υ

∂t
+ υ · ∇υ = −

∇P

ρ
+ ν∇2υ

∂ρ

∂t
= D

∂2ρ

∂x2
+ F (ρa, ρb, . . .)

• ρ: density

• υ: flow velocity
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Introduction

Microscopic/Mesoscopic models

• Evolution of individual particles,

distributions

• Detailed microscopic behavior

– Fine space/time scales

– Modeling flexibility (physics)

• Computationally expensive

Macroscopic models

• Evolution of e.g. moments (density,

momentum, . . . )

• Averaged macro-scale behavior

– Macroscopic space/time scales

– Mathematical abstraction

• Efficient algorithms exist

• System tasks, e.g. bifurcation analysis

-

Coarse equation-free computing

• Simplifying assumptions, closures, . . . are not always

analytically possible

• Bypass the derivation of a macroscopic model
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Introduction

Equation-Free Computing

micro. IC

   u(x,0)

macro. IC

   U(x,0)

microscopic / mesoscopic

 time stepper

macroscopic

time stepper

micro. state

   u(x,∆T)

macro. state

   U(x,∆T)

L
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R

e
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System-level tasks, e.g.

- bifurcation analysis,

- acceleration techniques

[Kevrekidis et al., 2000 — . . . ]

Mesoscopic lattice Boltzmann models are deterministic ⇒ no stochastic effects
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Introduction

Scale Separation

U : lower order moments: macroscopic variables

V : higher order moments

Conceptually in moment space:

∂u

∂t
= p(u) ⇔

∂U

∂t
= P̄ (U, V ) (1)

∂V

∂t
= Q̄(U, V ) (2)

After short simulation with (1)-(2), slaving relations are attained

V = S(U) or u = s(U) (3)

Substitute (3) in (1) to obtain reduced equation (PDE) which describes evolution

on a slow manifold

∂U

∂t
= P̄ (U, S(U)) = P (U) (4)

Equation-free: (3)-(4) unavailable, only microscopic time stepper
∂u

∂t
= p(u)
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Introduction

In singularly perturbed form:

∂U

∂t
= P̄ (U, V )

∂V

∂t
=

1

ε
Q̄(U, V )

small ε ⇒ large gap in time scales between U and V ⇒ fast slaving

Does not necessarily result in a small error (pure slow/fast variables, mixed)
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LBM

Lattice Boltzmann Model (LBM)

• For one-dimensional reaction-diffusion systems

• Discretize space x and time t ⇒ ∆x, ∆t

• Only 3 “particle” velocities (D1Q3 scheme)

vi = i
∆x

∆t
with i = −1, 0, 1

• “Microscopic” variables u: distribution functions fi(x, t). They relate to the

probability that a particle enters a lattice site x at time t with velocity vi

•
∂u

∂t
= p(u): LBM time stepper describes evolution:

fi(x + i∆x, t + ∆t) − fi(x, t) = −ω
(

fi(x, t) − f eq
i (x, t)

)

+
∆t

3
F
(

ρ(x, t)
)

with local diffusive equilibrium distribution f eq
i (x, t) =

1

3
ρ(x, t)

and relaxation parameter ω (which depends on D, ∆x and ∆t)
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LBM
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LBM

• Macroscopic variables U : densities ρ defined as zeroth order velocity moments

ρ(x, t) =

1
∑

i=−1

fi(x, t)

• Higher order moments V : “momentum” φ and “kinetic energy” ξ

φ(x, t) =

1
∑

i=−1

i fi(x, t) ξ(x, t) =
1

2

1
∑

i=−1

i2 fi(x, t)

• State of the LBM at (x, t) is completely described by either

– the distributions f = [f−1 f0 f1]
′ or

– the moments m = [ρ φ ξ]′.




ρ
φ
ξ



 =





1 1 1
−1 0 1

1
2 0 1

2









f−1

f0

f1



 ⇔ m = M f

and vice versa f = M−1m (one-to-one relationship)
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Fitting the LBM to the equation-free framework

Slaving Relations

Chapman-Enskog expansion of the LBM (when density ρ(x, t) varies smoothly)

⇒ Slaving relations

The distributions can be written as a functional of the macro. variable ρ(x, t) only

u = s(U) ⇔ fi =
1

3
ρ −

i∆x

3ω

∂ρ

∂x
+ O(∆x2) ; i = −1, 0, 1

The corresponding higher order moments φ(x, t) and ξ(x, t) are

V = S(U) ⇔ φ = −
2∆x

3ω

∂ρ

∂x
+ O(∆x3)

ξ =
1

3
ρ + O(∆x2)

⇒ Reduced equation is the standard reaction-diffusion PDE:

∂U(x, t)

∂t
= P (U(x, t)) ⇔

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
+ F (ρa(x, t), ρb(x, t), . . .)
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Fitting the LBM to the equation-free framework

micro. IC

   u(x,0)

macro. IC

   U(x,0)

microscopic / mesoscopic

 time stepper

macroscopic

time stepper

micro. state
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System-level tasks, e.g.

- bifurcation analysis,

- acceleration techniques

[Kevrekidis et al., 2000 — . . . ]

Mesoscopic lattice Boltzmann models are deterministic ⇒ no stochastic effects
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Fitting the LBM to the equation-free framework

Coarse Time Stepper for the LBM

Determine the macroscopic variables U : concentration ρ(x, t) (cf. PDE)

(the microscopic variables u are the distributions fi(x, t))

One coarse time step ∆T :

1. Lifting: initialization is a one-to-many problem

ρ(x, 0) 7→ fi(x, 0) ; for i = −1, 0, 1 with ρ(x, 0) =

1
∑

i=−1

fi(x, 0)

Or: How to initialize the missing higher order moments φ(x, 0) and ξ(x, 0)?

2. Mesoscopic simulation using the LBM over a time interval ∆T

3. Restriction:

ρ(x, ∆T ) =

1
∑

i=−1

fi(x, ∆T )

Successively repeat procedure within time integration interval [0, T ]

Pieter Van Leemput, Mathematics of Model Reduction Workshop, August 28-30, 2007 14



Outline

Outline

• Introduction (5)

– Multiscale equation-free computing (3)

– Scale separation (2)

• Lattice Boltzmann model (LBM) (6)

– The Model (3)

– Fitting the LBM to the equation-free framework (3)

• Initialization or lifting (8)

– Lifting issues (2)

– Analytical slaving relations (1)

– Analysis of the constrained runs scheme (5)

• Time stepper based bifurcation analysis (3)

• Hybrid spatial coupling (2)

• Conclusions (1)

Pieter Van Leemput, Mathematics of Model Reduction Workshop, August 28-30, 2007 15



Lifting scheme:

fi = wiρ ;
∑

i wi = 1

wi = 1/3; i = −1, 0, 1 (blue)

w−1 = w1 = 0.01 (green)

w−1 = 0.75, w1 = 0.01 (red)

ICu

u

U (0)

u

u
steady
state

slow

Lifting: Issues

Very fast slaving of higher order moments: ∆Thealing ≈ 20∆t
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φ small, ξ good
φ small, ξ bad
φ large
LBM

But lower order moment ρ also changes ⇒ different trajectory ⇒ ∆T À 20∆t

[VL, Lust and Kevrekidis, Physica D (2005)]
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Lifting: Issues

• Inaccurate lifting can induce significant and persistent errors

• Time trajectory described by erroneous reaction-diffusion PDE

[Vandekerckhove, VL and Roose, submitted (2007)]

∂ρ(x, t)

∂t
= D

ω

2 − ω

∂2ρ(x, t)

∂x2
+ F (ρa(x, t), ρb(x, t), . . .)

• Initialize micro. state u(0) = fi(x, 0) from the macro. variables U (0) = ρ(x, 0)

such that initial state is consistent with U (0) and lies on the slow manifold

• Accurate initialization possible using

– known analytical slaving relations: Chapman-Enskog

– numerical alternative: Constrained runs scheme

• Note: Results also useful in the context of LBM simulation itself (because a

LBM is deterministic). E.g. one should not initialize with the BGK equilibrium

(as is mostly done now)

fi(x, 0) = f eq
i (x, 0) =

1

3
ρ(x, 0)
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Lifting: Slaving relations

Analytical Slaving Relations

Chapman-Enskog expansion of the LBM (when density ρ(x, t) varies smoothly)

⇒ Slaving relations

The distributions can be written as a functional of the macro. variable ρ(x, t) only

u = s(U) ⇔ fi ≈
1

3
ρ −

i∆x

3ω

∂ρ

∂x
+ O(∆x2) ; i = −1, 0, 1

The corresponding higher order moments φ(x, t) and ξ(x, t) are

V = S(U) ⇔ φ ≈ −
2∆x

3ω

∂ρ

∂x
+ O(∆x3)

ξ ≈
1

3
ρ + O(∆x2)

slaved to (are functionals of) the macroscopic variable ρ(x, t) only

Needs analytical derivation, correct discretization, . . .
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Lifting: Constrained runs scheme

Numerical Approximation: Constrained Runs (CR) Scheme

• Slaving relations difficult to compute analytically → numerical approximation

• [Gear and Kevrekidis, J. Sci. Comp. (2005)]

• Short simulations and ‘resetting’ of U to U (0)
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ρ(0) ρ̃
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Lifting: Constrained runs scheme for the LBM

Constrained Runs Scheme for the LBM

Require: ρ(0) = ρ(x, 0)

f
(0)
i = wi ρ

(0) e.g. wi = 1/3

repeat

f (k+1) = LBMδt(f
(k))

m(k+1) = Mf (k+1)

ρ(k+1) = ρ(0)

f (k+1) = M−1m(k+1)

until convergence heuristic < ε , with ε ¿ 1

Fixed point iteration for the higher order moments φ and ξ, given ρ(0)

m(k+1) = [ρ(0) φ(k+1) ξ(k+1)]′ = Cδt(m
(k)) k = 0, 1, 2, . . .

with fixed point {ρ(0), φ̃, ξ̃}

Proven: CR scheme is unconditionally stable with convergence rate |1 − ω|
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Constrained runs scheme for the LBM

Convergence to Approximation of Slaved State

Fixed point {(ρ(0)), φ̃, ξ̃} (given here for pure diffusion)

φ̃ = −
2∆x

3 ω

∂ρ(0)

∂x
+

∆x

ω2

(−2ω + 2)

(ω − 2)

∂(ρ̃ − ρ(0))

∂x

ξ̃ =
1

3
ρ(0) +

1

2ω
(ρ̃ − ρ(0))

is a first order approximation of the unknown slaved state (Chapman-Enskog)

φ(ρ(0)) = −
2∆x

3 ω

∂ρ(0)

∂x
+

∆x∆t

3ω2

(−2ω2 + 2ω − 2)

(ω − 2)

∂2ρ(0)

∂x∂t
+ . . .

ξ(ρ(0)) =
1

3
ρ(0) +

∆t

6ω

∂ρ(0)

∂t
+ . . .

Approximation error depends on ρ̃ − ρ(0), i.e. the error made by constraining
(resetting) the macro. variables

Because (ρ̃ − ρ(0)) ∼ ∆t
∂ρ(0)

∂t
⇒ Use smallest possible simulation time δt = ∆t

[VL, Vanroose and Roose, TW444, submitted (2005)]
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Higher order constrained runs schemes for the LBM
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Error of regular constrained runs scheme related to (ρ̃ − ρ(0)) ∼ ∆t
∂ρ(0)

∂t
Interpolate higher order moments and reset lower order ones:

ξ(k+1) = ξ1 − ∆t
∂ξ1

∂t
= ξ1 − ∆t

ξ2 − ξ1

∆t
= 2ξ1 − ξ2 and ρ(k+1) = ρ(0)

Rely on slaving and attraction towards slow manifold: ξ(ρ(0)) =
1

3
ρ(0) + O(∆x2)
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Higher order constrained runs schemes for the LBM
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• Fixed point closer to slow manifold ⇒ higher accuracy

• But possibly unstable: restricted range of ω-values, e.g. ω ∈ (0.69, 1.29)

• Analysis of CR schemes for stiff singularly perturbed ODEs

[Gear, Kaper, Kevrekidis and Zagaris, SIADS (2005) & submitted (2007)]

• Compute fixed point numerically with e.g. Newton-Krylov, GMRES

[Vandekerckhove, Kevrekidis and Roose, submitted (2007)]

Pieter Van Leemput, Mathematics of Model Reduction Workshop, August 28-30, 2007 23



Outline

Outline

• Introduction (5)

– Multiscale equation-free computing (3)

– Scale separation (2)

• Lattice Boltzmann model (LBM) (6)

– The Model (3)

– Fitting the LBM to the equation-free framework (3)

• Initialization or lifting (8)

– Lifting issues (2)

– Analytical slaving relations (1)

– Analysis of the constrained runs scheme (5)

• Time stepper based bifurcation analysis (3)

• Hybrid spatial coupling (2)

• Conclusions (1)

Pieter Van Leemput, Mathematics of Model Reduction Workshop, August 28-30, 2007 24



Time stepper based numerical bifurcation analysis

System-Level Tasks: Numerical Bifurcation Analysis

Non-linear models: Evolution of asymptotic states of macro. variables (steady

states, periodic solutions) and their stability as function of system parameters

[U] stable

unstable

parameter

• Classical bifurcation analysis: requires linearization, Jacobian matrix, . . .

• Time stepper based bifurcation analysis: ‘matrix-free’

– Condition on time stepper: few dominant eigenvalues at fixed point solution

– Given only a truly microscopic model: use coarse time stepper
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Time stepper based numerical bifurcation analysis

Steady state bifurcation diagram for large ∆T = T = 5 = 5000∆t
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Newton-Picard method — FitzHugh-Nagumo reaction-diffusion system
Accurate bifurcation and stability information for all models (eigenvalues!)
[VL, Lust and Kevrekidis, Physica D (2005)]
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Time stepper based numerical bifurcation analysis

Steady state bifurcation diagram for small ∆T = 20∆t

• Zeroth order lifting: fi =
1

3
ρ (blue)

• First order lifting: constrained runs (red)
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No computational gain; to be combined with projective integration
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Hybrid spatial coupling

Hybrid Spatial Coupling

PDE LBM
-

f ?
1 (xpde)

©©
©©
©©
©©
©©

x x x x x x x x

HH

HH

HH

HH

HH

xpde − ∆x xpde xlbe xlbe + ∆x

L1
¾ - L2 = L − L1

¾ -

• LBM domain: Unknown post-collision distribution f ?
1 (xpde, t):

f1(xpde, t) =
ρ(xpde, t)

3
−

∆x

3 ω

ρ(xlbe, t) − ρ(xpde − ∆x, t)

2∆x
+ O(∆x2) (∗)

• LBM local collisions and reactions to obtain f ?
1 (xpde, t)

• Propagate this value to xlbe, i.e. f1(xlbe, t + ∆t) = f ?
1 (xpde, t)

• Variant with overlap [Albuquerque, LNCS (2004), I. J. Mult. Comp. Eng. (2006)]

Alternative to above CE-1 coupling scheme: Replace (∗) with constrained runs
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Hybrid spatial coupling
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Spatial discretization error E(x) at steady state: E(x) = ρ(x) − ρc(x)

Maximal E(x) for CE-1 coupling scheme (and constant reaction term):

E1 = E(xlbe) =
L1L2

L
(1 − ω)

∆x

6ω
(ω − 2)

(

2
∂2ρc(xlbe)

∂x2
−

∂2ρc(xlbe + ∆x)

∂x2

)

[VL, Vandekerckhove, Vanroose and Roose, to appear in MMS (2007)]
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Conclusions

Conclusions

• LBM test case for multiscale and equation-free computing (no stochastic effects!)

• Lifting/Initialization is critical step in equation-free/LBM simulation

• Influence on size ∆T / significant errors

• Constrained runs scheme for LBM for 1D reaction-diffusion

– Unconditionally stable with convergence factor |1 − ω|

– Converges to a first order approximation of the slaved state

• Higher order constrained runs schemes: more accurate, possibly unstable

• Time stepper based bifurcation analysis of LBM is feasible

– Steady states and periodic solutions

– Both full LBM and coarse equation-free time stepper for LBM

• Hybrid spatial coupling of LBM and discretized PDE

– Use slaving relations or constrained runs at the interface

– Spatial discretization error one order less accurate than local interface error
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