Equation-free computing: A lattice Boltzmann case study

Pieter Van Leemput

Department of Computer Science, K.U.Leuven, Belgium

in collaboration with

Y. Kevrekidis (Princeton), K. Lust (Groningen), D. Roose (Leuven),C. Vandekerckhove (Leuven), W. Vanroose (Antwerp).

- Introduction (5)
 - Multiscale equation-free computing (3)
 - Scale separation (2)
- Lattice Boltzmann model (LBM) (6)
 - The Model (3)
 - Fitting the LBM to the equation-free framework (3)
- Initialization or lifting (8)
 - Lifting issues (2)
 - Analytical slaving relations (1)
 - Analysis of the constrained runs scheme (5)
- Time stepper based bifurcation analysis (3)
- Hybrid spatial coupling (2)
- Conclusions (1)

Mathematical Models

Microscopic/Mesoscopic models

• Relations between micro. variables

- particles (e.g. fluid molecules) ...
- ... collide and propagate

Macroscopic models

• Relations between macro. variables

$$\frac{\partial \upsilon}{\partial t} + \upsilon \cdot \nabla \upsilon = -\frac{\nabla P}{\rho} + \nu \nabla^2 \upsilon$$

$$\frac{\partial \rho}{\partial t} = D \frac{\partial^2 \rho}{\partial x^2} + F(\rho^a, \rho^b, \ldots)$$

- ρ : density
- v: flow velocity

Microscopic/Mesoscopic models

- Evolution of individual particles, distributions
- Detailed microscopic behavior
 - Fine space/time scales
 - Modeling flexibility (physics)
- Computationally expensive

Macroscopic models

- Evolution of e.g. moments (density, momentum, ...)
- Averaged macro-scale behavior
 - Macroscopic space/time scales
 - Mathematical abstraction
- Efficient algorithms exist
- System tasks, e.g. bifurcation analysis

Coarse equation-free computing

- Simplifying assumptions, closures, . . . are not always analytically possible
- Bypass the derivation of a macroscopic model

Introduction

Equation-Free Computing

Mesoscopic lattice Boltzmann models are deterministic \Rightarrow no stochastic effects

Pieter Van Leemput, Mathematics of Model Reduction Workshop, August 28-30, 2007

Scale Separation

- U: lower order moments: macroscopic variables
- V: higher order moments

Conceptually in moment space:

$$\frac{\partial u}{\partial t} = p(u) \qquad \Leftrightarrow \qquad \frac{\partial U}{\partial t} = \bar{P}(U, V) \tag{1}$$

$$\frac{\partial V}{\partial t} = \bar{Q}(U, V) \tag{2}$$

After short simulation with (1)-(2), slaving relations are attained

$$V = S(U) \quad \text{or} \quad u = s(U) \tag{3}$$

Substitute (3) in (1) to obtain reduced equation (PDE) which describes evolution on a slow manifold

$$\frac{\partial U}{\partial t} = \bar{P}(U, S(U)) = P(U)$$
(4)

Equation-free: (3)-(4) unavailable, only microscopic time stepper $\frac{\partial u}{\partial t} = p(u)$

Introduction

In singularly perturbed form:

$$\frac{\partial U}{\partial t} = \bar{P}(U, V)$$
$$\frac{\partial V}{\partial t} = \frac{1}{\epsilon} \bar{Q}(U, V)$$

small $\epsilon \Rightarrow$ large gap in time scales between U and V \Rightarrow fast slaving

Does not necessarily result in a small error (pure slow/fast variables, mixed)

- Introduction (5)
 - Multiscale equation-free computing (3)
 - Scale separation (2)
- Lattice Boltzmann model (LBM) (6)
 - The Model (3)
 - Fitting the LBM to the equation-free framework (3)
- Initialization or lifting (8)
 - Lifting issues (2)
 - Analytical slaving relations (1)
 - Analysis of the constrained runs scheme (5)
- Time stepper based bifurcation analysis (3)
- Hybrid spatial coupling (2)
- Conclusions (1)

Lattice Boltzmann Model (LBM)

- For one-dimensional reaction-diffusion systems
- Discretize space x and time $t \Rightarrow \Delta x$, Δt
- Only 3 "particle" velocities (D1Q3 scheme)

$$v_i = i \frac{\Delta x}{\Delta t}$$
 with $i = -1, 0, 1$

• "Microscopic" variables u: distribution functions $f_i(x, t)$. They relate to the probability that a particle enters a lattice site x at time t with velocity v_i

•
$$\frac{\partial u}{\partial t} = p(u)$$
: LBM time stepper describes evolution:

$$f_i(x+i\Delta x,t+\Delta t) - f_i(x,t) = -\omega \left(f_i(x,t) - f_i^{eq}(x,t)\right) + \frac{\Delta t}{3}F(\rho(x,t))$$

with local diffusive equilibrium distribution $f_i^{eq}(x,t) = \frac{1}{3}\rho(x,t)$ and relaxation parameter ω (which depends on D, Δx and Δt)

• Macroscopic variables U: densities ρ defined as zeroth order velocity moments

$$\rho(x,t) = \sum_{i=-1}^{1} f_i(x,t)$$

• Higher order moments V: "momentum" ϕ and "kinetic energy" ξ

$$\phi(x,t) = \sum_{i=-1}^{1} i f_i(x,t) \qquad \xi(x,t) = \frac{1}{2} \sum_{i=-1}^{1} i^2 f_i(x,t)$$

- State of the LBM at (x, t) is completely described by either
 - the distributions $oldsymbol{f} = [f_{-1} \ f_0 \ f_1]'$ or
 - the moments $oldsymbol{m} = [
 ho \ \phi \ \xi]'.$

$$\begin{bmatrix} \rho \\ \phi \\ \xi \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} f_{-1} \\ f_0 \\ f_1 \end{bmatrix} \quad \Leftrightarrow \quad \boldsymbol{m} = M \, \boldsymbol{f}$$

and vice versa $\boldsymbol{f} = M^{-1}\boldsymbol{m}$ (one-to-one relationship)

Slaving Relations

Chapman-Enskog expansion of the LBM (when density $\rho(x, t)$ varies smoothly) \Rightarrow Slaving relations

The distributions can be written as a functional of the macro. variable $\rho(x,t)$ only

$$u = s(U)$$
 \Leftrightarrow $f_i = \frac{1}{3}\rho - \frac{i\Delta x}{3\omega}\frac{\partial \rho}{\partial x} + \mathcal{O}(\Delta x^2)$; $i = -1, 0, 1$

The corresponding higher order moments $\phi(x,t)$ and $\xi(x,t)$ are

$$V = S(U) \qquad \Leftrightarrow \qquad \phi = -\frac{2\Delta x}{3\omega}\frac{\partial \rho}{\partial x} + \mathcal{O}(\Delta x^3)$$
$$\xi = \frac{1}{3}\rho + \mathcal{O}(\Delta x^2)$$

 \Rightarrow Reduced equation is the standard reaction-diffusion PDE:

$$\frac{\partial U(x,t)}{\partial t} = P(U(x,t)) \quad \Leftrightarrow \quad \frac{\partial \rho(x,t)}{\partial t} = D \frac{\partial^2 \rho(x,t)}{\partial x^2} + F(\rho^a(x,t),\rho^b(x,t),\ldots)$$

[Kevrekidis et al., 2000 — ...]

Mesoscopic lattice Boltzmann models are deterministic \Rightarrow no stochastic effects

Coarse Time Stepper for the LBM

Determine the macroscopic variables U: concentration $\rho(x, t)$ (cf. PDE)

(the microscopic variables u are the distributions $f_i(x,t)$)

One coarse time step ΔT :

1. Lifting: initialization is a one-to-many problem

$$ho(x,0)\mapsto f_i(x,0)\ ; \ \ ext{for} \ \ i=-1,0,1 \ \ \ ext{with} \ \ \
ho(x,0)=\sum_{i=-1}^1 f_i(x,0)$$

Or: How to initialize the missing higher order moments $\phi(x, 0)$ and $\xi(x, 0)$?

- 2. Mesoscopic simulation using the LBM over a time interval ΔT
- 3. Restriction:

$$\rho(x, \Delta T) = \sum_{i=-1}^{1} f_i(x, \Delta T)$$

Successively repeat procedure within time integration interval [0, T]

- Introduction (5)
 - Multiscale equation-free computing (3)
 - Scale separation (2)
- Lattice Boltzmann model (LBM) (6)
 - The Model (3)
 - Fitting the LBM to the equation-free framework (3)
- Initialization or lifting (8)
 - Lifting issues (2)
 - Analytical slaving relations (1)
 - Analysis of the constrained runs scheme (5)
- Time stepper based bifurcation analysis (3)
- Hybrid spatial coupling (2)
- Conclusions (1)

Lifting: Issues

But lower order moment ρ also changes \Rightarrow different trajectory $\Rightarrow \Delta T \gg 20\Delta t$ [VL, Lust and Kevrekidis, Physica D (2005)]

- Inaccurate lifting can induce significant and persistent errors
- Time trajectory described by erroneous reaction-diffusion PDE [Vandekerckhove, VL and Roose, submitted (2007)]

$$\frac{\partial \rho(x,t)}{\partial t} = D \frac{\omega}{2-\omega} \frac{\partial^2 \rho(x,t)}{\partial x^2} + F(\rho^a(x,t),\rho^b(x,t),\ldots)$$

- Initialize micro. state $u^{(0)} = f_i(x, 0)$ from the macro. variables $U^{(0)} = \rho(x, 0)$ such that initial state is consistent with $U^{(0)}$ and lies on the slow manifold
- Accurate initialization possible using
 - known analytical slaving relations: Chapman-Enskog
 - numerical alternative: Constrained runs scheme
- Note: Results also useful in the context of LBM simulation itself (because a LBM is deterministic). E.g. one should not initialize with the BGK equilibrium (as is mostly done now)

$$f_i(x,0) = f_i^{eq}(x,0) = \frac{1}{3}\rho(x,0)$$

Analytical Slaving Relations

Chapman-Enskog expansion of the LBM (when density $\rho(x, t)$ varies smoothly) \Rightarrow Slaving relations

The distributions can be written as a functional of the macro. variable $\rho(x,t)$ only

$$u = s(U)$$
 \Leftrightarrow $f_i \approx \frac{1}{3}\rho - \frac{i\Delta x}{3\omega}\frac{\partial \rho}{\partial x} + \mathcal{O}(\Delta x^2)$; $i = -1, 0, 1$

The corresponding higher order moments $\phi(x,t)$ and $\xi(x,t)$ are

$$V = S(U) \qquad \Leftrightarrow \qquad \phi \approx -\frac{2\Delta x}{3\omega} \frac{\partial \rho}{\partial x} + \mathcal{O}(\Delta x^3)$$
$$\xi \approx \frac{1}{3}\rho + \mathcal{O}(\Delta x^2)$$

slaved to (are functionals of) the macroscopic variable $\rho(x,t)$ only

Needs analytical derivation, correct discretization, ...

Numerical Approximation: Constrained Runs (CR) Scheme

- Slaving relations difficult to compute analytically \rightarrow numerical approximation
- [Gear and Kevrekidis, J. Sci. Comp. (2005)]
- Short simulations and 'resetting' of U to $U^{\left(0\right)}$

Constrained Runs Scheme for the LBM

Fixed point iteration for the higher order moments ϕ and ξ , given $\rho^{(0)}$

$$m{m}^{(k+1)} = [
ho^{(0)} \phi^{(k+1)} \xi^{(k+1)}]' = \mathcal{C}_{\delta t}(m{m}^{(k)}) \quad k = 0, 1, 2, \dots$$

with fixed point $\{\rho^{(0)}, \tilde{\phi}, \tilde{\xi}\}$

Proven: CR scheme is unconditionally stable with convergence rate $|1 - \omega|$

Convergence to Approximation of Slaved State

Fixed point $\{(\rho^{(0)}), \tilde{\phi}, \tilde{\xi}\}$ (given here for pure diffusion)

$$\tilde{\phi} = -\frac{2\Delta x}{3\omega} \frac{\partial \rho^{(0)}}{\partial x} + \frac{\Delta x}{\omega^2} \frac{(-2\omega+2)}{(\omega-2)} \frac{\partial(\tilde{\rho}-\rho^{(0)})}{\partial x}$$
$$\tilde{\xi} = \frac{1}{3}\rho^{(0)} + \frac{1}{2\omega}(\tilde{\rho}-\rho^{(0)})$$

is a first order approximation of the unknown slaved state (Chapman-Enskog)

$$\phi(\rho^{(0)}) = -\frac{2\Delta x}{3\omega} \frac{\partial \rho^{(0)}}{\partial x} + \frac{\Delta x \Delta t}{3\omega^2} \frac{(-2\omega^2 + 2\omega - 2)}{(\omega - 2)} \frac{\partial^2 \rho^{(0)}}{\partial x \partial t} + \dots$$
$$\xi(\rho^{(0)}) = \frac{1}{3}\rho^{(0)} + \frac{\Delta t}{6\omega} \frac{\partial \rho^{(0)}}{\partial t} + \dots$$

Approximation error depends on $\tilde{\rho} - \rho^{(0)}$, i.e. the error made by constraining (resetting) the macro. variables

Because $(\tilde{\rho} - \rho^{(0)}) \sim \Delta t \frac{\partial \rho^{(0)}}{\partial t} \Rightarrow$ Use smallest possible simulation time $\delta t = \Delta t$ [VL, Vanroose and Roose, TW444, submitted (2005)]

$$\xi^{(k+1)} = \xi_1 - \Delta t \frac{\partial \xi_1}{\partial t} = \xi_1 - \Delta t \frac{\xi_2 - \xi_1}{\Delta t} = 2\xi_1 - \xi_2 \quad \text{and} \quad \rho^{(k+1)} = \rho^{(0)}$$

Rely on slaving and attraction towards slow manifold: $\xi(\rho^{(0)}) = \frac{1}{3}\rho^{(0)} + \mathcal{O}(\Delta x^2)$

- Fixed point closer to slow manifold \Rightarrow higher accuracy
- But possibly unstable: restricted range of ω -values, e.g. $\omega \in (0.69, 1.29)$
- Analysis of CR schemes for stiff singularly perturbed ODEs
 [Gear, Kaper, Kevrekidis and Zagaris, SIADS (2005) & submitted (2007)]
- Compute fixed point numerically with e.g. Newton-Krylov, GMRES [Vandekerckhove, Kevrekidis and Roose, submitted (2007)]

- Introduction (5)
 - Multiscale equation-free computing (3)
 - Scale separation (2)
- Lattice Boltzmann model (LBM) (6)
 - The Model (3)
 - Fitting the LBM to the equation-free framework (3)
- Initialization or lifting (8)
 - Lifting issues (2)
 - Analytical slaving relations (1)
 - Analysis of the constrained runs scheme (5)
- Time stepper based bifurcation analysis (3)
- Hybrid spatial coupling (2)
- Conclusions (1)

System-Level Tasks: Numerical Bifurcation Analysis

Non-linear models: Evolution of asymptotic states of macro. variables (steady states, periodic solutions) and their stability as function of system parameters

- Classical bifurcation analysis: requires linearization, Jacobian matrix, ...
- Time stepper based bifurcation analysis: 'matrix-free'
 - Condition on time stepper: few dominant eigenvalues at fixed point solution
 - Given only a truly microscopic model: use coarse time stepper

Steady state bifurcation diagram for large $\Delta T = T = 5 = 5000 \Delta t$

Newton-Picard method — FitzHugh-Nagumo reaction-diffusion system Accurate bifurcation and stability information for all models (eigenvalues!) [VL, Lust and Kevrekidis, Physica D (2005)]

Steady state bifurcation diagram for small $\Delta T = 20\Delta t$

- Zeroth order lifting: $f_i = \frac{1}{3}\rho$ (blue)
- First order lifting: constrained runs (red)

No computational gain; to be combined with projective integration

Pieter Van Leemput, Mathematics of Model Reduction Workshop, August 28-30, 2007

- Introduction (5)
 - Multiscale equation-free computing (3)
 - Scale separation (2)
- Lattice Boltzmann model (LBM) (6)
 - The Model (3)
 - Fitting the LBM to the equation-free framework (3)
- Initialization or lifting (8)
 - Lifting issues (2)
 - Analytical slaving relations (1)
 - Analysis of the constrained runs scheme (5)
- Time stepper based bifurcation analysis (3)
- Hybrid spatial coupling (2)
- Conclusions (1)

Hybrid Spatial Coupling

• LBM domain: Unknown post-collision distribution $f_1^{\star}(x_{pde}, t)$:

$$f_1(x_{pde},t) = \frac{\rho(x_{pde},t)}{3} - \frac{\Delta x}{3\omega} \frac{\rho(x_{lbe},t) - \rho(x_{pde} - \Delta x,t)}{2\Delta x} + \mathcal{O}(\Delta x^2) \qquad (*)$$

- LBM local collisions and reactions to obtain $f_1^{\star}(x_{pde}, t)$
- Propagate this value to x_{lbe} , i.e. $f_1(x_{lbe}, t + \Delta t) = f_1^{\star}(x_{pde}, t)$
- Variant with overlap [Albuquerque, LNCS (2004), I. J. Mult. Comp. Eng. (2006)]

Alternative to above CE-1 coupling scheme: Replace (*) with constrained runs

constant ω = 1.25 (variable Δt)

Spatial discretization error E(x) at steady state: $E(x) = \rho(x) - \rho^c(x)$ Maximal E(x) for CE-1 coupling scheme (and constant reaction term):

$$E_1 = E(x_{lbe}) = \frac{L_1 L_2}{L} (1 - \omega) \frac{\Delta x}{6\omega} (\omega - 2) \left(2 \frac{\partial^2 \rho^c(x_{lbe})}{\partial x^2} - \frac{\partial^2 \rho^c(x_{lbe} + \Delta x)}{\partial x^2} \right)$$

[VL, Vandekerckhove, Vanroose and Roose, to appear in MMS (2007)]

- Introduction (5)
 - Multiscale equation-free computing (3)
 - Scale separation (2)
- Lattice Boltzmann model (LBM) (6)
 - The Model (3)
 - Fitting the LBM to the equation-free framework (3)
- Initialization or lifting (8)
 - Lifting issues (2)
 - Analytical slaving relations (1)
 - Analysis of the constrained runs scheme (5)
- Time stepper based bifurcation analysis (3)
- Hybrid spatial coupling (2)
- Conclusions (1)

Conclusions

- LBM test case for multiscale and equation-free computing (no stochastic effects!)
- Lifting/Initialization is critical step in equation-free/LBM simulation
- Influence on size ΔT / significant errors
- Constrained runs scheme for LBM for 1D reaction-diffusion
 - Unconditionally stable with convergence factor $|1-\omega|$
 - Converges to a first order approximation of the slaved state
- Higher order constrained runs schemes: more accurate, possibly unstable
- Time stepper based bifurcation analysis of LBM is feasible
 - Steady states and periodic solutions
 - Both full LBM and coarse equation-free time stepper for LBM
- Hybrid spatial coupling of LBM and discretized PDE
 - Use slaving relations or constrained runs at the interface
 - Spatial discretization error one order less accurate than local interface error