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Abstract. We study a particular complex vector bundle over Davis-
Januszkiewicz spaces. We show that the isomorphism class of this vector
bundle is complety determined by its Chern classes and the isomorphism
class of its reali�cation by its Pontrjagin and Euler classes. As shown
by Davis and Januczkiewicz, this vector bundle is closely related to the
equivariant tangent bundle of toric manifolds respectively of moment
angle complexes. Moreover, we show that splitting properties of the
vector bundle are re
ected by colorings of simplicial complexes and vice
versa.

1. Introduction

Given a simplicial complex K, Davis and Januszkiewicz constructed a
family of spaces, all of which are homotopy equivalent, and whose integral
cohomology is isomorphic to the associated Stanley-Reisner algebra Z[K]
[DJ]. We denote a generic model for this homotopy type by DJ (K). In the
above mentioned in
uential paper, Davis and Januszkiewicz also constructed
a particular complex vector bundle � over DJ (K) whose Chern classes are
given by the elementary symmetric polynomials in the generators of Z[K].
This vector bundle is of particular interest. For example, if K is the dual
of a simple polytope P , the reali�cation �R of � is stably isomorphic to the
bundle given by applying the Borel construction to the tangent bundle of the
associated moment angle complex ZK [DJ]. And if M2n is a toric manifold
over P , then again the Borel construction applied to the tangent bundle of
M2n produces a vector bundle stably isomorphic to �R.
We will split of a large trivial vector bundle of �. We are interested

in two aspects of the remaining vector bundle �. We will show that the
Chern classes ci(�) of � determine � up to isomorphism, and the Pontrjagin
classes pj(�) together with Euler class e(�) do the same for �R. We will also
show that stable splittings of � into a direct sum of linear complex bundles
respectively of �R into a direct sum of 2-dimensional real bundles produce
colorings of K and vice versa.
To make our statements more precise we have to �x notation and recall

some basic constructions. Let [m] := f1; :::;mg be the set of the �rst m
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natural numbers. A �nite abstract simplicial complex K on [m] is given by
a set of faces � � [m] which is closed under the formation of subsets. We
consider the empty set ; as a face of K. The dimension dim(�) of a face �
is given in terms of its cardinality by j�j � 1, and the dimension dim(K) of
K is given by the maximum of the dimensions of its faces. The most basic
example is given by the full simplex �(m) which consists of all possible
subsets of [m]. In particular, �(m) contains K as a subcomplex.
For a commutative ring R with unit we denote by R[m] := R[v1; :::; vm]

the graded polynomial algebra generated by the algbraicaly independent
elements v1; :::; vm of degree 2, one for each vertex of K. For each subset � �
[m] we denote by v� :=

Q
j2� vj the square free monomial whose factors are

in 1 to 1 relation with vertices contained in �. The graded Stanley-Reisner
algebra R[K] associated with K is de�ned as the quotient R[K] :=R[m]=IK ,
where IK � R[V ] is the ideal generated by all elements v� such that � � [m]
is not a face of K.
For a complex vector bundle � we denote by c(�) the total Chern class.

And for a real vector bundle � we denote by p(�) the total Pontrjagin class
and, if � is oriented, by e(�) the Euler class.

Theorem 1.1. Let K be a �nite simplicial complex of dimension n� 1.
(i) There exists an n-dimensional complex vector bundle � over DJ(K) such
that c(�) =

Qm
i=1(1 + vi) 2 Z[K] and p(�R) =

Qm
i=1(1� v2i ) 2 Z[K].

(ii) If � # DJ(K) is another n-dimensional complex vector bundle over
DJ(K) such that c(�) = c(�), then � and � are isomorphic.
(iii) If � # DJ(K) is another oriented real vector bundle over DJ(K) such
that p(�) = p(�R) then � and �R are isomorphic as (unoriented) real vector
bundles. If in addition e(�) = e(�R), then � and �R are isomorphic as
oriented real vector bundles.

We will relate splitting properties of the vector bundle � # DJ(K) to
colorings of K. A regular r-paint coloring, an r-coloring for short, of a
simplicial complex K is a non degenerate simplicial map g : K �! �(r),
i.e. the restriction of g on each face is an injection. If dim(K) = n � 1,
then K only allows r-colorings for r � n. The inclusion K � �(m) always
provides an m-coloring. Confusing notation we will denote by C and R a
1-dimensional trivial (G-equivariant) complex or real vector bundles over a
(G-)space X.

Theorem 1.2. Let K be a �nite simplicial complex of dimension n� 1 and
let r � n. Then the following statements are equivalent:
(i) There exists an r-coloring for K.
(ii) The complex vector bundle � � Cr�n # DJ(K) splits into a direct sum
of complex line bundles.
(iii) The real vector bundle �R � R2(r�n) splits into a direct sum of 2-
dimensional real vector bundles.
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Remark 1.3. Let M2n be a quasi toric manifold over the simple polytope
P . That is that M2n carries a Tn-action, which is locally standard and
that M2n=Tn = P is a simple polytope. The Borel construction produces a
space (M2n)hTn :=ETn�TnM

2n, which is homotopy equivalent to DJ(K),
where K is the dual simplicial complex of P . For details see [DJ] or [BP].
Davis and Januczkiewicz showed that the Borel construction applied to the
tangent bundle � of M2n produces an oriented vector bundle �hTn # DJ(K)
with the same Pontrjagin classes as �. Hence, by Theorem 1.1 both are iso-
morphic. Actually, in this case Davis and Januczkiewicz already constructed
the bundle � and showed that �R and �hTn are isomorphic [DJ]. For details
of the construction of �hTn see Section 3.
In particular, if � � R2(r�n) splits equivariantly into a direct sum of

2-dimensional Tn-equivariant real vector bundle, then there exists an r-
coloring for K. The opposite conclusion does not hold in general, since, for
a Tn-equivariant vector bundle � # M2n, a splitting of �hTn may not imply
an equivariant splitting of �.
If the moment angle complex ZK is a manifold, a similar considerations

applies to the tangent bundle of ZK .

If the moment angle complex ZK is a manifold, a similar remark applies
to the tangent bundle of ZK .
The paper is organized as follow. In the next section we describe di�erent

models for DJ(K) needed for our purposes. The geometric construction of
the vector bundle � with the properties stated in Theorem 1.1(i) is contained
in Section 3. Using Sullivan's arithmetique we reduce the global uniqueness
problem to the analogue p-adic question in Section 4. The p-adic uniqueness
problem, discussed in Section 5, involves the calculation of some higher de-
rived inverse limits. These calculation are worked out in Section 6 and �nish
the proof of Theorem 1.1. in the �nal section we put splitting properties of
� and colorings of K in relation and prove Theorem 1.2.
If not otherwise speci�ed, K will always denote an abstract �nite simpli-

cial complex of dimension n� 1 with m vertices.
We would like to thank Nigel Ray and Taras Panov for many helpful

discussions and continuous support.

2. Models for DJ(K)

For the proof of our Theorems we will need di�erent models for the space
DJ(K), which we will describe in this section.
Given a pair (X;Y ) of pointed topological space we can de�ne covariant

functors
XK ; (X;Y )K ; cstX : cat(K) �! Top:

The functor XK assigns to each face � the cartesian product X� and to each
morphism i�;� the inclusionX

� � X� where missing coordinates are set to �.

And (X;Y )K assigns to � the productX��Y [m]n� and to i�;� the coordinate

wise inclusionX��Y [m]n� � X��Y [m]n�. The constant functor cstX assigns
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X to each face and the identity idX to each morphism. The inclusions
X� � X [m] = Xm establish a natural transformation XK �! cstXm .
We are interested in two particular cases, namely the functor XK for the

classifying space BT = CP (1) of the 1-dimensional circle T and the functor
(X;Y )K for the pair (D2; S1). The colimit

ZK := colimcat(K) (D
2; S1)K

is called the moment angle complex associated to K. We have inclusions
ZK � (D2)m � Cm and the standard Tm-action on Cm restricts to ZK . The
Borel construction produces a �bration

qK : (ZK)hTm := ET �Tm ZK �! BTm

with �ber ZK . Moreover, DJ(K) :=ZK)hTm is a realization of the Stanley-
Reisner algebra Z[K] and such that the map H�(qK ;Z) can be identi�ed
with the map Z[m] �! Z[K] [DJ]. We will use this model for the geometric
construction of our vector bundle �.
In [BP], Buchstaber and Panov showed that c(K) := colimcat(K) BT

K

is homotopy equivalent to DJ(K) and that the map

c(K) �! colimcat(K) cstBTm = BTm

is homotopic to qK . We wish to study homotopy theoretic properties of
DJ(K) ' c(K). Colimits behave poorly from a homotopy theoretic point
of view, but the left derived functor, known as homotopy colimit, provides
the appropriate tool for such questions. Following [V], the homotopy colimit
hc(K) := hocolimcat(K) BT

K may be described as the two sided bar con-

struction B(�;cat(K); BTK) in Top. For the functor BTK , the projection

hocolimcat(K) BT
K �! colimcat(K) BT

K

is a homotopy equivalence [NR1]. In particular, hc(K) ' c(K) ' DJ(K).
We will use the model hc(K) to prove the uniqueness properties of the vector
bundle � and to provide a homotopy theoretic construction of �.

3. A geometric construction of the vector bundle �

For particular cases of simplicial complexes of dimension n � 1, Davis
and Januszkiewicz constructed an n-dimensional complex vector bundle over
DJ(K) by geometric means. The total Chern class of this bundle is given
by
Q

i(1 + vi) 2 Z[K]. We will adjust their construction to our needs and
slightly generalize it.
Let G be a compact Lie group and X a G-space. We will denote the Borel

construction EG �G X by XhG. If � # X is an n-dimensional G-vector
bundle over X with total space E(�), the Borel construction establishes
a �bre bundle E(�)hG �! XhG. In fact, this is an n-dimensional vector
bundle over XhG [S], denoted by �hG.
Now we can start with our construction. Let Li denote the complex 1-

dimensional Tm-representation given by the Tm-action on C via the i-th
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coordinate. We set L :=
Lm

i=1 Li
�= Cm. The diagonal action of Tm on the

products Li � ZK and L � ZK and the projections onto the second factor
establish complex Tm-equivariant vector bundles �0i # ZK and �0 # ZK
over ZK . By construction, we have �0 �=

L
i �

0
i. We de�ne �i := (�0i)hTm

and � := �0hTm . It is straight forward to see that the total Chern class
c(�i) is given by 1 + vi 2 Z[K], that c(�) =

Q
i(1 + vi) 2 Z[K], that

p(�i) = 1� v2i 2 Z[K] and that p(�) =
Q

i(1� v2i ) 2 Z[K]. (see [DJ]).

Let A 2 Cm�(m�n) be a m� (m� n)-matrix such that each square sub-
matrix given by an m � n rows is invertible, e.g. we can take A = (sr),
1 � r � m; 1 � s � m� n. We de�ne a map

fA : Cm�n � ZK �! Cm � ZK

by fA(x; z):=(y; z) where y:=Ax�z is given by coordinate wise multiplication
of Ax and z, i.e. the i-th coordinate yi of y is given by yi :=(Ax)izi. Here, we
use that ZK � Cm. If Tm acts on the source only via the second coordinate,
then E(m � n) := Cm�n � ZK is the total space of the m � n-dimensional
trivial Tm-bundle over Cm�n # ZK . The target is the total space E(�0) of
the Tm-bundle �0.
The following proposition contains Part (i) of Theorem 1.1. We will give

a di�erent proof for it in the following sections.

Proposition 3.1.

(i) The map f : E(m � n) �! E(�0) is Tm-equivariant and a bundle
monomorphism. Moreover, �0 �= Cm�n � � as Tm-equivariant vector bun-
dles for an appropriate Tm-equivariant n-dimensional complex vector bundle
� # ZK .
(ii) � = �0hTm

�= Cm�n � �hTm.
(iii) The total Chern class of � :=�hTm is given by c(�) =

Q
i(1+vi) 2 Z[K].

(iv) The total Pontrjagin class of � := �hTm is given by p(�) =
Q

i(1� v2i ) 2
Z[K].

Proof. For t 2 Tm, we have fA(t(x; z) = f(x; t(z)) = (Ax � t(z); t(z)) =
t(Ax � z; z) = tfA(x; z). This shows that fA is Tm-equivariant. The map fA
is a bundle monomorphism, since at least m�n coordinates of z are unequal
to 0, and since any set of m � n rows of A make up an invertible square
matrix. The quotient � := �=(Cm�n) is again a Tm-vector bundle over ZK .
Since every short exact sequence of Tm-equivariant bundles of the compact
space ZK splits [S], we get �0 �= � � Cm�n. This proves the �rst part. The
other three parts are direct consequences of Part (i). �

4. Uniqueness properties of �

In this section we want to prove the second and third part of Theorem
1.1. As a side e�ect we will also provide a homotopy theoretic proof of the
�rst part. We will reformulate Theorem 1.1 in terms of homotopy theory
and describe a r-dimensional vector bundle � # X over a topological space
X by its classifying map � : X �! BU(r).
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We can identify the integral cohomology of the classifying spaces BTm

and BU(m) of with Z[m] and Z[c1; :::; cm], where ci denotes the i-th univer-
sal Chern class. Passing to classifying spaces and cohomology, the stan-
dard inclusion j : Tm = TU(m) � U(m) of the maximal torus induces

the map Z[c1; :::; cm] �= Z[m]�m � Z[m], where �m denotes the symmet-
ric group on m letters respectively the Weyl group of U(m). If K is a
�nite simplicial complex of dimension n � 1 and n � r � m, the compo-
sition Z[c1; ::::; cm] �! Z[m] �! Z[K] maps the Chern class cj to zero for
j � r + 1. Hence this composition factors uniquely through Z[c1; :::; cr] and
establishes a commutative diagram

Z[c1; :::; cm]

��

// Z[m]

��
Z[c1; :::; cr]

gr // Z[K]

This diagram can partly be realized by spaces and maps, namely by

BU(m) BTmoo

BU(r)

OO

c(K)

OO

We want to construct a map c(K) �! BU(r) making the above diagram
commutative up to homotopy. We can think of such a map as the classifying
map of an n-dimensional complex vector bundle over DJ(K) which has the
desired Chern classes. In fact, we want to show that such a map is unique
up to homotopy.
Let U(r) �! SO(2r) and SO(2r) �! O(2r) denote the standard inclu-

sions. Composition with BU(r) �! BSO(2r) re
ects the reali�cation of a
complex vector bundle � : X �! BU(r) and will be denoted by �R. Com-
position with BSO(2r) �! BO(2r) means we forget the orientation of a
vector bundle. For real oriented vector bundle � : X �! BSO(2r), this will
be denoted by � The composition

T r �! U(r) �! SO(2r) �! O(2r)

describes at each stage a maximal torus of the compact Lie group. Passing
to classifying spaces and and rational cohomology,

H�(BO(2r);Q) �= Q[m]WO(2r) �= Q[p1; :::; pr]

is a polynomial algebra generated by the universal Pontrjagin classes pi and

H�(BSO(2r);Q) �= Q[m]WSO(2r) �= Q[p1; :::; pr�1; e]

is a polynomial algebra generated by the �rst r � 1 Pontrjagin classes and
the universal Euler class e.
The following theorem is a homotopy theoretic formulation of Theorem

1.1.
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Theorem 4.1.

(i) For n � r, there exist a map �r : DJ(K) �! BU(r), such that H�(�r;Z) =
gr.
(ii) A map � : DJ(K) �! BU(r) is homotopic to �r if and only if H�(�;Q) =
H�(�r;Q).
(iii) For a map � : DJ(K) �! BSO(2r) the composition � is homotopic to
(�r)R if and only if H�((�r)R;Q) = H�(�;Q) And � is homotopic to (�r)R if
and only H�((�r)R;Q) = H�(�;Q).

Remark 4.2. Let � : DJ(K) �! BSO(2r) be a real oriented vector bundle
such that p(�) = p((�r)R). Since e2 = (�1)npr 2 H�(BSO(2r);Q), the
Euler classes e(�) and e((�r)R) may only di�er by a sign. Hence changing
the orientation of � we can always achieve that e(�) = e((�r)R. Therefore
we only have to show that the Pontrjagin classes together with the Euler
class characterize (�r)R up to isomorphisms of oriented real vector bundles.

The proof is based on arithmetique square arguments and similar state-
ments over the rationals and over p-adic integers, each prime at a time. For
a topological space X we denote by X0 the rationalization, by X

^
p the p-adic

completion in the sense of Bous�eld and Kan and by XAf
the �nite adele

type of X. If X is `nice' (and all spaces under consideration are `nice'), these
spaces �t together to Sullivan's arithmetique square

X //

��

X^ :=
Q

pX
^
p

��
X0

// XAf

In the following the group Gr denotes either U(r) or SO(2r). And con-
fusing notation we will denote the composition (�r)R by �r as well.

Theorem 4.3. Under the assumption of Theorem 4.1 the following holds:
(i) There exists a map (�r)0 : DJ(K) �! BU(r)0, such that H�((�r)0;Q) =
gr 
Q.
(ii) A map � : DJ(K) �! BG(r)0 is homotopic to (�r)0 if and only if
H�(�;Q) = H�(�r;Q).

Theorem 4.4. Let p be a prime. Under the assumptions of Theorem 4.1
the following holds:
(i) There exists a map (�r)

^
p : DJ(K) �! BU(r)^p , such that H�((�r)

^
p ;Z

^
p ) =

gr 
 Z
^
p .

(ii) A map � : DJ(K) �! BG(r)^p is homotopic to (�r)
^
p if and only if

H�(�;Z^p ) = H�(�r;Z
^
p ).

We will also need

Theorem 4.5. The map

[c(K); BG(r)] �! [DJ(K); BG(r)^] =
Y
p

[DJ(K); BG(r)^p ]
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is a monomorphism.

Proof of Theorem 4.1: Rationally, BG(r)0 is a product of rational Eilenberg-
MacLane spaces of even degree, one factor for each generator ofH�(BG(r);Q).
Therefore, the same holds for the �nite adele type BG(r)Af and, up to ho-
motopy, maps into BG(r)Af are determined by cohomological information,

Since (�r)0 and (�r)
^
p realize gr 
Q respectively gr 
 Z

^
p , the compositions

c(K)
(�r)0
�! BU(n)0 �! BU(n)Af

and

c(K)
(�r)^p
�!

Y
p

BU(n)^p = BU(n)^ �! BU(n)Af

are homotopic. Using the arithmetique square for BG(r) we can construct
map �r : DJ(K) �! BG(r) with the desired cohomological property.
SinceH�(DJ(K);Z) is torsion free, the mapH�(�;Q) determinesH�(�;Z)

as well as H�(�;Z^p ). The homotopical uniqueness of �r follows from Theo-
rem 4.4 and Theorem 4.5. �

Proof of Theorem 4.3: This follows from the fact that BG(r)0 is a product
of rational Eilenberg-MacLane spaces. �

Proof of Theorem 4.5: The homotopy �ber F of BG(r) �! BG(r)^ is
equivalent to the homotopy �ber of BG(r)0 �! BG(r)Af . Since BG(r)0 is
a product of rational Eilenberg-MacLane spaces of even degree, �i(F ) = 0
for i even. The obstruction groups for lifting homotopies between maps
DJ(K) �! BG(r)^p to BG(r) are given by H�(DJ(K);��(F )). All these
obstruction groups vanish, since H�(DJ(K);Z) is concentrated in even de-
grees. �

The proof of Theorem 4.4 is contained in the next section.

5. p-adic homotopy uniqueness

In this section we will work with the model hc(K) = hocolimcat(K) BT
K

for DJ(K). All homotopy colimits are taken over cat(K) and all higher
derived limits over the opposite category cat(K)op. For simpli�cation we
will drop these categories in the notations of limits. We will also skip the
notation of completion for maps. Again, G(r) will denote the either U(r) or
SO(2r) and T r � G(r) the standard maximal torus.
For each face � 2 K we denote by Z[�] the polynomial algebra with one

generators in degree 2 for each element of �. The algebra map

Z[c1; :::; cr]
gr
�! Z[K] �! Z[�]

maps ci onto the i-the elementary symmetric polynomial in Z[�]. It can be
realized by a composition

��r : BT� �! BT r �! BU(r);
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where the second map is induced by the maximal torus inclusion T r � U(r)
and the �rst map by a coordinate wise inclusion T� �! T r. Di�erent
coordinate wise inclusion into T r only di�er by a permutation and hence
by an element of the Weyl group of U(r). They are therefore conjugate in
U(r) and induce homotopic maps BT� �! BU(r) between the classifying
spaces. Moreover, since

[BT�; BU(n)^p ] �! Hom(H�(BU(n);Z^p ); H
�(BT �;Z^p ))

is injective [N], the algebra determines a unique homotopy type of a map
��r : BT� �! BU(r)^p . In particular, for an inclusion � � � the triangle

BT� //

��r

$$I
II

II
II

II
BT �

��r

zzuuu
uu
uu
uu

BU(r)^p

commutes up to homotopy. This de�nes a map �
(1)
r : hc(K)(1) �! BU(r)^p ,

unique up to homotopy, on the 1-skeleton of the homotopy colimit hc(K)
into BU(n)^p . The Bous�eld-Kan spectral sequence for homotopy inverse
limits [BK], together with work by Wojtkowiak [W] clarifying the situation
for the fundamental group, provides an obstruction theory for extending
this map to hc(K). The obstruction groups are given by the higher derived
limits

lim i+1�U
i ;

where �U
i : cat(K)op �! ab is the functor de�ned by

�U
i (�) := �i(map(BT�; BU(n)^p )��r

on faces � and the induced homomorphisms on inclusions. For a de�nition
and properties of higher derived limits see [BK] or [O].
The obstruction theory may also decide the question of uniqueness. Let

�r : DJ(K) �! BG(r) denote the map under consideration in both cases
and let �G

i denote the functor given by �G
i (�) := map (BT�; BG(r)^p )��r .

The image of the restriction map

R : [hc(k); BG(r)^p ] �! lim 0 [BTK ; BG(r)^p ]

may be identi�ed with homotopy classes of maps hc(K)(1) �! BG(r)^p . If

lim i�G
i vanishes for all i � 1, then R�1(�

(1)
r ) consist of at most one element.

By the above consideration, Theorem 4.4 is a consequence of

Proposition 5.1. For all j � i � 1, we have

lim j �G
i = 0

Remark 5.2. Let � : DJ(K) �! BG(r) be a map such that for each face
� of K the restriction �jBT� of � to BT� is homotopic to the restriction
�rjBT� . Then, the proof of Theorem 4.4 shows that the two maps �^p ; �r

^
p :



10 DIETRICH NOTBOHM

DJ(K) �! BG(r)^p are homotopic for all primes and Theorem 4.5 implies
that � and �r are homotopic.

We will prove Proposition 5.1 in the next section, where we will discuss
some general procedures to calculate higher derived limits of functors de�ned
on cat(K)op. We will �nish this section by collecting the data necessary for
the proof of the above proposition.
The involved mapping spaces can be calculated. The map (�r)� is induced

by a coordinate wise inclusion �� : T� �! TG(r) �! G(r) into the maximal
torus of G(r). The centralizer CG(r)(T

�) := CG(r)(�
�) of the image of �� is

given by T� �G(n� j�j). By [N], there exists a mod-p equivalence

BT� �BG(r � j�j) = BCG(r)(j�) �! map(BT�; BG(r)^p )(�r)� :

Moreover, up to homotopy the above mod-p equivalence is natural with
respect to the morphisms � �
alpha in cat(K)op. Such an inclusion induces the composition

BT ��BG(r�j�j) �! BT��BT�n��BG(r�j�j) �! BT��BG(r�jalphaj):

between the classifying spaces of the centralizers. After p-adic completion
this map is equivalent to the induced map between the associated mapping
spaces and, passing to homotopy groups, describes the map

�G
i (�) �! �G

i (�):

It will be convenient to de�ne functors

	2; �̂
G
2 : cat(K)op �! ab

by 	2(�) := �2((BT
�)^p ) and �̂G

2 (�) := �2(BG(r � j�j)
^
p ).

Lemma 5.3.

(i) For i = 2, we have an exact sequence

0 �! �̂G
2 �! �G

2 �! 	2 �! 0

of functors. And 	2
�= H2(BTK ;Z^p ).

(ii) �U
2j+1(�) = 0 for all j � r � j�j � 1.

(iii) If j � 2, � � � and j�j � n � j, then �U
2j(�)

�= �U
2j(�). If j = 1, the

same formula holds for �̂G
2 .

(iv) �SO
1 (�) = 0 for all �.

(v)If p is odd, then �̂SO
2 (�) = 0 for j�j 6= r � 1.

(vi) If t � 3 and � � �, then �SO
t (�) �! �SO

t (�) is an isomorphism for

j�j � n� t=2� 1=2. If p = 2, the same formula holds for �̂SO
2 .

Proof. The �rst half of Part (i) follows from the above considerations, the
second half is obvious.
Part (ii) and Part (iii) follow from the fact that �2s+1(BU(t)) = 0 for

0 � s � t� 1 and �2s(BU(t)) �= �2s(BU(t+ 1)) for 1 � s � t.
For every connected compact Lie group H, the classifying space BH is

simply connected. This proves Part (iv).
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The �fth part follows from the fact that �2(BSO(s)) �= Z=2 for s � 3.
Finally, �t(BSO(k)) �! �t(BSO(k+1)) is an isomorphism for t � k�1.

Since �SO
t (�) = �t(BSO(2(n� j�j)

^
p ), this implies the last claim. �

6. higher limits

We will continue to drop cat(K)op in the notation of limits. Given a
functor � : cat(K)op �! ab we de�ne for 0 � s � n functors ��s;�s :
cat(K)op �! ab by

��s(�) :=

(
�(�) for j�j � s

0 for j�j > s
�s(�) :=

(
�(�) for j�j = s

0 for j�j 6= s

Since for j�j � j�j there is no arrow �! � in cat(K)op, both functors are
well de�ned. Moreover, we have ��n = �. There exist exact sequences of
functors

1 �! ��s�1 �! ��s �! �s �! 1

which induce long exact sequences

:::! lim i�1�s ! lim i��s�1 ! lim i��s ! lim i�s �! :::

of higher derived limits.

Lemma 6.1.

(i) lim i�s = 0 for i � n� s+ 1.
(ii) lim i��s �! lim i� is an isomorphism for s � n� i+ 1.
(iii) If �(�) �= �(�) for � � � and j�j � n� i+ 1 then lim i� = 0.

Proof. For each s the functor �s �=
Q

�2K;j�j=s�� is a product of atomic

functors, i.e. ��(�) = 0 if � 6= �. In [NR2] the higher limits of atomic

functors are calculated. We have lim i�� = eH i�1(`K(�); �(�)). Here,

`K(�) := f� 2 K : � \ � = ;; � [ � 2 Kg

denotes the link of the face �. In particular, dim(`K)�) � n�j�j�1. Hence,
these groups vanish for i � n� j�j+ 1, which proves the �rst part.
Since lim j �s+1 = 0 for j � n� s, the second part follows from the above

long exact sequences for higher derived limits.
Let M := �(;) and let cstM : cat(K)op �! ab denote the constant

functor. Then, lim i cstM = 0 for i � 1 since cat(K)op has terminal object
and is contractible [BK]. By part (i) and (ii), we get

0 = lim i cstM �= lim i (cstM )�n�i+1
�= lim i��n�i+1

�= lim i�

�

Proof of Proposition 5.1: We �rst consider the functors �U
i for i � 3. We

want to calculate lim j �U
i for j � i. If i = 2k+1 and j�j � n�i+1 = n�2k �

n � k � 1, then �U
2k+1(�) = 0 (Lemma 5.3) and as well as lim j �U

i = 0 for
j � i Lemma 6.1).
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If i = 2k and j�j � n � 2k � n � k � 1, then �U
i (�) = Z^p and �U

i (�)
�=

�U
i (�) for � � � by Lemma 5.3. Hence, by Lemma 6.1, we have again

lim j �U
i = 0 for j � i.

The same argument shows that lim j �̂U
2 = 0 for j � 2.

Finally, we consider the functor �U
2 which �ts into the exact sequence

0 �! �̂U
2 �! �U

2 �! 	2
�= H2(BTK ;Z^p ) �! 0:

For j � 2, we have lim j H2(BTK ;Z^p ) = 0 [NR1] as well as lim j �̂U
2 = 0.

Hence, the same holds for �U
2 , which �nishes the proof in the complex case.

Now we consider the real case. By the same argument as for �U
2k+1, we

have lim j �SO
1 = 0.

If j � i � 3 we have n � j + 1 � n � i + 1 � n � i=2 � 1=2. This shows
that �SO

i (�) �= �SO
i (�) for � � � and j�j � n� j+1 (Lemma 5.3) and that

lim j�SO
i = 0 (Lemma 6.1).

For i = 2 we �rst consider the functor �̂SO
2 . If p is odd, then �̂SO

2 (�) 6= 0

if and only if j�j = r�1. Hence, if r � n+2, the functor �̂SO is trivial. For

r = n; n + 1, �̂SO
2 is a product of atomic functors only nontrivial either on

faces of order n or n� 1. But in both case, we have limj �̂SO
2 = 0 for j � 2.

If p = 2, then

�̂SO
2 (�) �= �2(BSO(2(r � j�j)) �=

8><>:
0 for r = j�j

Z for r = j�j+ 1

Z=2 otherwise

:

If r � n + 2, then �̂SO
2 = cstZ=2. If r = n, then we have two exceptional

cases, namely j�j = n; n � 1. Comparing �̂SO
2 with cstZ=2, we get an exact

sequence

0 �! � �! �̂SO
2 �! cstZ=2 �! � �! 0

with � = �n�1 and � = �n. And if r = n, then we have the same exact
sequence, but � = �n and � = 0. In both cases lim j � = 0 for j � 1 and
lim j � = 0 or j � 2 (Lemma 6.1). Splitting the long exact sequence into
two short exact sequences, the long exact sequence for higher derived limits
shows that

lim j �̂SO
2 = lim j cstZ=2 = 0

for j � 2.
Now, the same argument as for �U

2 shows that lim j �SO
2 = 0, which

�nishes the proof. �

7. Proof of Theorem 1.2

We start directly with proof. We continue to denote by G(r) either U(r)
or SO(2r) and by T r � G(r) the standard maximal torus of G(r). Let

�̂r : DJ(K) �! BT r be a lift of �r : DJ(K) �! BG(r). By construction
of �r, the restriction �rjBT� can be lifted to map a ��r : BT� �! BT r.
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And this map as well as the underlying homomorphism �� : T� �! T r

is given by a coordinate wise inclusion. The restriction �̂rjBT� : BT� �!
BT r is induced by a uniquely determined homomorphism �̂� : T� �! T r.
Both homomorphisms �̂� and �� are conjugate in G(r) [N]. Since T� is a
topological cyclic group, they di�er only by an element of the Weyl group
WG(r). That is there exists w 2 WG(r) such that �̂� = w��. If G(r) =
U(r), the Weyl group WG(r) = �r acts via permutations on T r and w�� is
again given by a coordinate wise inclusion. In particular there is a uniquely
determined underlying set theoretic injection g� : � �! [r] := f1; :::; rg
which describes the coordinate wise inclusion �̂�.
If G(r) = SO(2r), then WG(r)

�= (Z=2)r�1 o �r where �r again acts via

permutations and where (Z=2)r�1 acts via complex conjugation on coor-
dinates. In this case the underlying set theoretic injection g� : � �! [r]
describes �̂� only up to coordinate wise conjugation.
In both cases, if � � �, the uniqueness of g� says that g�j� = g�. Com-

bining all these maps de�nes then a map g[m] : [m] �! [r] which extends to
a non degenerate simplicial map g : K �! �(r). That is to say that K has
a r-coloring and shows that both, Part (ii) as well as Part (iii) of Theorem
1.2, imply the �rst part.
Now we start with an r-coloring g : K �! �(r) and want to construct

a lifting �̂r : DJ(K) �! BT r of �r. For each face � of K, the map g
induces a set theoretic injection g� : � �! [r]. And g� de�nes a coordinate
wise inclusion �� : BT� �! BT r. By construction, for � � � we have
��jBT� = ��. All these maps �t together to de�ne a map

�̂ : DJ(K) ' colimcat(K) BT
K �! BT r:

Let � denote the compositionDJ(K)
�̂
�! BT r �! BG(r). The restrictions

�jBT� and �rjBT� have both lifts to BT r given by coordinate wise inclusion.
These lifts di�er only by an element of the Weyl group and �jBT� and �rjBT�
are homotopic. By Remark 5.2, this implies that � and �r are homotopic
and that �r allows a lift to BT r. This shows that Part (i) of Theorem 1.2
implies the other two parts and �nishes the proof.

References

[BK] AK Bous�eld and Daniel M Kan, Homotopy Limits, Completions and Localizations,
Volume 304 of Lecture notes in Mathematics, Springer Verlag (1972).

[BP] Victor M Buchstaber and Taras E Panov, Torus Actions and Their Applications

in Topology and Combinatorics, volume 24 of University Lecture Series, American
Mathematical Society (2002).

[DJ] Michael W Davis and Tadeusz Januszkiewicz, Convex Polytopes, Coxeter Orbifolds

and Torus Actions, Duke Mathematical Journal 62 (1991), 417{451.
[N] Dietrich Notbohm, Maps between classifying spaces, Math. Z. 207 (1991), 153-168
[NR1] Dietrich Notbohm and Nigel Ray, On Davis-Januszkiewicz homotopy types I; For-

mality and Rationalisation, Algebraic and Geometric Topology 5 (2005), 31-51.
[NR2] Dietrich Notbohm and Nigel Ray, On Davis-Januszkiewicz homotopy types II; Com-

pletion and Globalisation, in preparation.



14 DIETRICH NOTBOHM

[O] Robert Oliver, Higher limits via Steinberg representations, Communications in Alge-
bra 22 (1994), 1381{1393.

[S] Graeme Segal, Equivariant K-theory, Publ. Math., Inst. Hautes tud. Sci. 34 (1968),
129-151

[V] Rainer M Vogt, Convenient categories of topological spaces for homotopy theory,
Archiv der Mathematik 22 (1971), 545{555.

[W] Zdzislaw Wojtkowiak, On maps from holimF to Z, Algebraic Topology, Barcelona
1986, Volume 1298 of Lecture notes in Mathematics, Springer Verlag (1987).

Department of Mathematics and Computer Science, University of Leices-

ter, University Road, Leicester LE1 7RH, England

E-mail address: dn8@mcs.le.ac.uk


